This version of Total HTML Converter is unregistered.
cover

title:

author:
publisher:
isbn10 | asin:
print isbn13:
ebook isbn13:
language:

subject

publication date:
Icc:
ddc:

subject:

C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\cover.html

Page 1 of 1

cover next paae >

Curtis Roads
the compater music tatorial

The Computer Music Tutorial

Roads, Curtis.

MIT Press

0262680823

9780262680820

9780585342597

English

Computer music--Instruction and study, Computer
composition.

1995

MT56.R6 1995¢eb

780/.285

Computer music--Instruction and study, Computer
composition.

cover next page >

5/23/2011

< previous page next paae >

Page 1

I
FUNDAMENTAT. CONCEPTS

This version of Total HTML Converter is unregistered.

page_3 Page 1 of 1
< previous page page 3 next paage >
Page 3

Overview to Part |

Once upon a timenot too long agodigital audio recording, synthesis, processing, and playback were the
privilege of laboratory specialists. Today they are nearly as commonplace as television; virtually all computers
are equipped for digital audio. Digital audio, the subject of chapter 1, is central to computer music. The
samplenothing more than a numberis the atom of sound. Theory says that we can construct any sound emitted
by a loudspeaker by means of a series of samples that trace the pattern of a sound waveform over time. But
theory becomes reality only when strict technical conditions concerning sampling rate and sample width are
met. If the sampling rate is too low, the result is a sound that is either muftled or polluted by distortion. Sample
width refers to the size of the digital word used to represent a sample; if it is too small, the sound is literally
chopped by noise.

Chapter 2 introduces the art of programming. Knowing how to program is the key to doing something really
new in computer music. Thus a familiarity with programming concepts is an essential topic for the student.
Organization of Part [

Part I introduces basic concepts in digital audio and programming that are developed throughout the rest of the
book. Chapters 1 and 2 cover a great deal of material in summary form. Their goal is to convey a sense of the
scope of these fields as they have evolved, and to prepare readers for the many chapters to follow.

The first chapter, by John Strawn and Curtis Roads, covers such basic topics as the history of digital
recording, the sampling theorem, aliasing, phase correction, quantization, dither, audio converters,
oversampling, and digital audio formats. Portions of chapter 1 were originally published in Keyboard magazine
but have been extensivelv revised for this book.

< previous page page 3 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 3.html 5/23/2011

< previous page page 4 next paae >

Page 4

Chapter 2, "Music Systems Programming" by Curtis Abbott, is an introduction to the art of programming from
a master practitioner. The author traces the development of programming languages and the elements of
programming style. He summarizes the basic concepts of programming languages, their control and data

structures. and describes the fundamentals of obiect-oriented nrogrammine.

page 4 next page >

< previous page

1
Digital Audio Concepts

With John Strawn

Backeround: Historv of Digital Audio Recording
Experimental Digital Recording
Digital Sound for the Public
Digital Sound for Musicians
Digital Multitrack Recording
Basics of Sound Signals
Frequency and Amplitude
Time-domain Representation
Frequencv-domain Representation
Phase
Tmnortance of Phase
Analog Renresentations of Sound
Digital Renresentations of Sound
Analog-to-digital Conversion
Binarv Numbers
Digital-to-analog Conversion
Digital Audio Recording versus MIDI Recording
Samnling
Reconstruction of the Analog Signal
Alasing (Foldover)
The Samnling Theorem

Tdeal Samnline Freaniencv

< previous page

Antialiasing and Anti-imaging Filters
Phase Correction
Ouantization
Ouantization Noise
Low-level Ouantization Noise and Dither
Converter Linearity
Dvnamic Range of Digital Audio Systems
Decibels
Dvnamic Range of a Digital Svstem
Oversamnling
Multinle-hit Oversamnling Converters
1-bit Qversamnling Converters
Digital Audio Media
Svnthesis and Sienal Processing

Conchision

next page >

Page 6

This version of Total HTML Converter is unregistered.

page_7 Page 1 of 1
< previous page page 7 next paage >
Page 7

The merger of digital audio recording with computer music technology creates a supple and powerful artistic
medium. This chapter introduces the history and technology of digital audio recording and playback. After
studying this introduction, you should be familiar with the basic vocabulary and concepts of digital audio. In the
interest of brevity we condense topics that are large specialities unto themselves; for more literature sources
see D. Davis (1988, 1992).

Background:
History of Digital Audio Recording

Sound recording has a rich history, beginning with Thomas Edison and Emile Berliner's experiments in the
1870s, and marked by V. Poulsen's Telegraphone magnetic wire recorder of 1898 (Read and Welch 1976).
Early audio recording was a mechanical process (figure 1.1).

Although the invention of the triode vacuum tube in 1906 launched the era of electronics, electronically
produced records did not become practical until 1924 (Keller 1981). Figure 1.2 depicts one of the horn-
loaded loudspeakers typical in the 1920s.

Optical sound recording on film was first demonstrated in 1922 (Ristow 1993). Sound recording on tape
coated with powdered magnetized material was developed in the 1930s in Germany (figure 1.3), but did not
reach the rest of the world until after World War 2. The German Magnetophon tape

e Y PRSI T— R T AR T LT
gl SENTATEL | s '::?i." i AT B s
a ; -~ ¢ { i

Figure 1.1
Mechnical recording session before 1900. Sound vibrations picked up by the large
cone over the piano were transduced into vibrations of a cutting stylus piercing a
rotating wax cvlinder.

< previous page page 7 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 7.html 5/23/2011

< previous padge page 8 next paage >

Page 8

s, | h 1 TOVELIRRLDARDDIRRD LT VOAREDRRR L DARRELIRRRE1ARRE) LLLUREELH]

Haut-Parleurs

AMPLION

Brevers E-A. GRAHAM

IIINlIIIlIIIIlIIHIIIIIIIHI“IIII'IIIIIIIA

-4
=
=
=
E
-

LLTRTLISELTIREL]

Amplion Libellule, Prix 135 francs
Auditions a I'Exposition Internationale de T.5. F., Arts Décoratifs, quai d'Orsay

Compagnie Francaise AMPLION
131, rue de Vaugirard, 131, PARIS (157) '
R. . Bzine 216437 6

s | | | VAR FARRT [FAREIIARERIRERTIAERD [LLTIRELTIRET T IIIIIIIIIIIIIIII!IIII_lII"|"||

Figure 1.2
Amplion loudsneaker. as advertised in 1925.

This version of Total HTML Converter is unregistered.

page_9 Page 1 of 1
< previous page page 9 next paage >
Page 9

Figure 1.3
Prototype of a portable Magnetophon tape recorder from 1935, made by AEG.
(Photograph courtesy of BASF Aktiengesellschaft.)

recorders were a great advance over previous wire and steel band recorders, which required soldering or
welding to make a splice. The Magnetophons and their descendants were analog recorders. The term
"analog" refers to the fact that the waveform encoded on tape is a close analogy to the original sound
waveform picked up by a microphone. Analog recording continues to be refined, but faces fundamental
physical limits. These limits are most apparent when making copies from one analog medium to
anotheradditional noise is inescapable.

For more on the history of analog recording, with particular reference to multitrack machines, see chapter 9.
Experimental Digital Recording

The core concept in digital audio recording is sampling, that is, converting continuous analog signals (such as
those coming from a microphone) into discrete time-sampled s1gnals The theoretical underpinning of sampling
is

< previous page page 9 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 9.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_10 Page 1 of 1
< previous page page 10 next paage >
Page 10

the sampling theorem, which specifies the relation between the sampling rate and the audio bandwidth (see
the section on the sampling theorem later in this chapter). This theorem is also called the Nyquist theorem
after the work of Harold Nyquist of Bell Telephone Laboratories (Nyquist 1928), but another form of this
theorem was first stated in 1841 by the French mathematician Augustin Louis Cauchy (1789 1857). The
British researcher A. Reeves developed the first patented pulse-code-modulation (PCM) system for
transmission of messages in "amplitude-dichotomized, time-quantized" (digital) form (Reeves 1938; Licklider
1950; Black 1953). Even today, digital recording is sometimes called "PCM recording." The development of
information theory contributed to the understanding of digital audio transmission (Shannon 1948). Solving the
difficult problems of converting between analog signals and digital signals took decades, and is still being
improved. (We describe the conversion processes later.)

In the late 1950s, Max Mathews and his group at Bell Telephone Laboratories generated the first synthetic
sounds from a digital computer. The samples were written by the computer to expensive and bulky reel-to-reel
computer tape storage drives. The production of sound from the numbers was a separate process of playing
back the tape through a custom-built 12-bit vacuum tube "digital-to-sound converter" developed by the Epsco
Corporation (Roads 1980; see also chapter 3).

Hamming, Huftfman, and Gilbert originated the theory of digital error correction in the 1950s and 1960s.
Later, Sato, Blesser, Stockham, and Doi made contributions to error correction that resulted in the first
practical systems for digital audio recording. The first dedicated one-channel digital audio recorder (based on a
videotape mechanism), was demonstrated by the NHK, the Japan broadcasting company (Nakajima et al.
1983). Soon thereafter, Denon developed an improved version (figure 1.4), and the race began to bring digital
audio recorders to market (Iwamura et al. 1973).

By 1977 the first commercial recording system came to market, the Sony PCM-1 processor, designed to
encode 13-bit digital audio signals onto Sony Beta format videocassette recorders. Within a year this was
displaced by 16-bit PCM encoders such as the Sony PCM-1600 (Nakajima et al. 1978). At this point
product development split along two lines: professional and "consumer" units, although a real mass market for
this type of digital recording never materialized. The professional Sony PCM-1610 and 1630 became the
standards for compact disc (CD) mastering, while Sony PCM-F1-compatible systems (also called EIAJ
systems, for Electronics Industry Association of Japan) became a de facto standard for low-cost digital audio
recording on videocassette. These standards continued throughout the 1980s.

< previous page page 10 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 10.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_11 Page 1 of 1
< previous page page 11 next paage >
Page 11

l.l.i-'lilrlrld‘lr -‘I-'.J

=i S

mEmdaees . g@BD 'L"‘\I:

Figure 1.4
Nippon Columbia (Denon) digital audio recorder made in 1973 based on a 1-inch
videotape recorder (on the right).

The Audio Engineering Society established two standard sampling frequencies in 1985: 44.1 and 48 KHz.
They revised their specification in 1992 (Audio Engineering Society 1992a, 1992b). (A 32 KHz sampling
frequency for broadcast purposes also exists.) Meanwhile, a few companies developed higher-resolution
digital recorders capable of encoding more than sixteen bits at higher sampling rates. For example, a version of
Mitsubishi's X-86 reel-to-reel digital tape recorder encoded 20 bits at a 96 KHz sampling frequency
(Mitsubishi 1986). A variety of high-resolution recorders are now available.

Digital Sound for the Public

Digital sound first reached the general public in 1982 by means of the compact disc (CD) format, a 12-cm
optical disc read by a laser (figure 1.5). The CD format was developed jointly by the Philips and Sony
corporations after years of development. It was a tremendous commercial success, selling over 1.35 million
players and tens of millions of discs within two years (Pohlman 1989). Since then a variety of products have
been derived from

< previous page page 11 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 11.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_12 Page 1 of 1
< previous page page 12 next paage >
Page 12

Figure 1.5
The Sony-Philips compact disc.

CD technology, including CD-ROM (Read Only Memory), CD-I (Interactive), and other formats that mix
audio data, texts, and images.

By the early 1990s, manufacturers targeted the need for recordable digital media. Various stereo media
appeared, including Digital Audio Tape (DAT), Digital Compact Cassettes (DCC), the Mini-Disc (MD), and
recordable CDs (CD-R). (See the section on digital audio media below.)

Digital Sound for Musicians

Although CD players had inexpensive 16-bit DACs, good-quality converters attached to computers were not
common before 1988. Prior to this time.

< previous page page 12 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 12.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_13 Page 1 of 1
< previous page page 13 next paage >
Page 13

a few institutional computer music centers developed custom-made ADCs and DACs, but owners of the new
personal computer systems had to wait. They could buy digital synthesizers and control them from their
computer using the MIDI protocol (see chapter 21), but they could not directly synthesize or record sound
with the computer.

Only in the late 1980s did low-cost, good-quality converters become available for personal computers. This
development heralded a new era for computer music. In a short period, sound synthesis, recording, and
processing by computer became widespread. Dozens of different audio workstations reached the musical
marketplace. These systems let musicians record music onto the hard disk connected to a personal computer.
This music could be precisely edited on the screen of the computer, with playback from the hard disk.

Digital Multitrack Recording

In contrast to stereo recorders that record both left and right channels at the same time, multitrack recorders
have several discrete channels or tracks that can be recorded at different times. Each track can record a
separate instrument, for example, allowing flexibility when the tracks are later mixed. Another advantage of
multitrack machines is that they let musicians build recordings in several layers; each new layer is an
accompaniment to previously recorded lavers.

The British Broadcasting Company (BBC) developed an experimental ten-channel digital tape recorder in
1976. Two years later, the 3M company, working with the BBC, introduced the first commercial 32-track
digital recorder (figure 1.6) as well as a rudimentary digital tape editor (Duffy 1982). The first computer disk-
based random-access sound editor and mixer was developed by the Soundstream company in Salt Lake City,
Utah (see figure 16.38). Their system allowed mixing of up to eight tracks or sound files stored on computer
disk at a time (Ingebretsen and Stockham 1984).

By the mid-1980s, both 3M and Soundstream had withdrawn from the digital multitrack tape recorder market,
which was then dominated by the Sony and Mitsubishi conglomerates, later joined by the Studer company.
For a number of years, digital multitrack recording was a very expensive enterprise (figure 1.7). The situation
entered a new phase in the early 1990s with the introduction of low-cost multitrack tape recorders by Alesis
and Tascam, and inexpensive multitrack disk recorders by a variety of concerns. (Chapter 9 recounts the
historv of analog multitrack recording.)

< previous page page 13 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 13.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_l4 Page 1 of 1
< previous page page 14 next paage >
Page 14

Figure 1.6
3M 32-track digital tape recorder. introduced in 1978.

Basics of Sound Signals

This section introduces the basic concepts and terminology for describing sound signals, including frequency,
amplitude, and phase.

Frequency and Amplitude

Sound reaches listeners' ears after being transmitted through air from a source. Listeners hear sound because
the air pressure is changing slightly in their ears. If the pressure varies according to a repeating pattern we say
the sound has a periodic waveform. If there is no discernible pattern it is called noise. In between these two
extremes is a vast domain of quasi-periodic and quasi-noisy sounds.

One repetition of a periodic waveform is called a cycle, and the fundamental frequency of the waveform is
the number of cycles that occur per second. As the length of the cyclecalled the wavelength or
periodincreases, the frequency in cycles per second decreases, and vice versa. In the rest of this book we
substitute Hz for "cycles per second" in accordance with standard acoustical terminology. (Hz is an
abbreviation for Hertz. named after the German acoustician Heinrich Hertz.)

< previous page page 14 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 14.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_15 Page 1 of 1
< previous page page 15 next paae >
Page 15

Figure 1.7
Studer D820-48 DASH digital multitrack recorder introduced in 1991 with a retail price
of about $270,000.

Time-domain Representation

A simple method of depicting sound waveforms is to draw them in the form of a graph of air pressure versus
time (figure 1.8). This is called a time-domain representation. When the curved line is near the bottom of the
graph, then the air pressure is lower, and when the curve is near the top of the graph, the air pressure has
increased. The amplitude of the waveform is the amount of air pressure change; we can measure amplitude as
the vertical distance from the zero pressure point to the highest (or lowest) points of a given waveform
segment.

< previous page page 15 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 15.html 5/23/2011

< previous page

pressure

A A Nk
AV s

Timg —=

Figure 1.8
Time-domain representation of a signal. The
vertical dimension shows the air pressure.
When the curved line is near the top of the
graph, the air pressure is greater. Below the
solid horizontal line, the air pressure is
reduced. Atmospheric pressure variations
heard as sound can occur quickly; for
musical sounds, this entire graph might
last no more than one-thousandth of a
second (1 ms).

An acoustic instrument creates sound by emitting vibrations that change the air pressure around the instrument.
A loudspeaker creates sound by moving back and forth according to voltage changes in an electronic signal.
When the loudspeaker moves "in" from its position at rest, then the air pressure decreases. As the loudspeaker
moves "out," the air pressure near the loudspeaker is raised. To create an audible sound these in/out vibrations
must occur at a frequency in the range of about 20 to 20,000 Hz.

Frequency-domain Representation

Besides the fundamental frequency, there can be many frequencies present in a waveform. A frequency-
domain or spectrum representation shows the frequency content of a sound. The individual frequency
components of the spectrum can be referred to as harmonics or partials. Harmonic frequencies are simple
inteeer multinles of the fundamental freauencv. Assuming a

page 16 next page >

< previous padge

next paage >

Page 1

1T 10 20 30 40 50 60

Harmonics

Fhase

Frequency componants
10 42211 omilled

|
Amp.

pll L L1 | l

Harmonics —e

41 212
Fraquency compenents

Figure 1.9
Time-domain and frequency-representations of four signals. (a) Time-domain view of one cycle of a sine wave.
(b) Spectrum of the one frequency component in a sine wave. (c¢) Time-domain view of one cycle of a sawtooth
waveform.(d) Spectrum showing the exponentially decreasing frequency content of a sawtooth wave. (e) Time-
domain view of one cycle of a complex waveform. Although the waveform looks complex, when it is repeated ove
and over its sound is actually simplelike a thin reed organ sound. (f) The spectrum of waveform (e) shows that it
is dominated by a few frequencies. (g) A random noise waveform. (%) If the waveform is constantly changing (eac
cycle is different from the last cycle) then we hear noise. The frequency content of noise is very complex. In this
case the analysis extracted 252 frequencies. This snapshot does not reveal how their amplitudes are
constantlv changing over time.

This version of Total HTML Converter is unregistered.

page_18 Page 1 of 1
< previous page page 18 next paage >
Page 18

fundamental or first harmonic of 440 Hz, its second harmonic is 880 Hz, its third harmonic is 1760 Hz, and
so on. More generally, any frequency component can be called a partial, whether or not it is an integer multiple
of a fundamental. Indeed, many sounds have no particular fundamental frequency.

The frequency content of a waveform can be displayed in many ways. A standard way is to plot each partial
as a line along an x-axis. The height of each line indicates the strength (or amplitude) of each frequency
component. The purest signal is a sine waveform, so named because it can be calculated using trigonometric
formulae for the sine of an angle. (Appendix A explains this derivation.) A pure sine wave represents just one
frequency component, or one line in a spectrum. Figure 1.9 depicts the time-domain and frequency-domain
representations of several waveforms. Notice that the spectrum plots are labeled "Harmonics" on their
horizontal axis, since the analysis algorithm assumes that its input is exactly one period of the fundamental of a
periodic waveform. In the case of the noise signal in figure 1.9g, this assumption is not valid, so we relabel the
partials as "frequency components."

Phase

The starting point of a periodic waveform on the y or amplitude axis is its initial phase. For example, a typical
sine wave starts at the amplitude point 0 and completes its cycle at 0. If we displace the starting point by 2

on the horizontal axis (or 90 degrees) then the sinusoidal wave starts and ends at 1 on the amplitude axis. By
convention this is called a cosine wave. In effect, a cosine is equivalent to a sine wave that is phase shifted by
90 degrees (figure 1.10).

Figure 1.10
A sine waveform is equivalent to a cosine

waveform that has been delayed or phase
shifted slightlv.

< previous page page 18 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 18.html 5/23/2011

< previous page

Figure 1.11
The effects of phase inversion. (b) is
a phase-inverted copy of (a). If the
two waveforms are added together,
they sum to zero (c).

When two signals start at the same point they are said to be in phase or phase aligned. This contrasts to a
signal that is slightly delayed with respect to another signal, in which the two signals are out of phase. When a
signal 4 is the exact opposite phase of another signal B (i.e., it is 180 degrees out of phase, so that for every
positive value in signal 4 there is a corresponding negative value for signal B), we say that B has reversed
polarity with respect to 4. We could also say that B is a phase-inverted copy of A. Figure 1.11 portrays the
effect when two signals in inverse phase relationship sum.

Importance of Phase

It is sometimes said that phase is insignificant to the human ear, because two signals that are exactly the same
except for their initial phase are difficult to distinguish. Actually, research indicates that 180-degree differences
in absolute phase or polarity can be distinguished by some people under laboratory conditions (Greiner and
Melton 1991). But even apart from this special case, phase is an important concept for several reasons. Every
filter uses phase shifts to alter signals. A filter phase shifts a signal (by delaying its input for a short time) and
then combines the phase-shifted version with the original signal to create frequency-dependent phase
cancellation effects that

age 19

This version of Total HTML Converter is unregistered.

page_20 Page 1 of 1
< previous page page 20 next paage >
Page 20

alter the spectrum of the original. By "frequency-dependent" we mean that not all frequency components are
affected equally. When the phase shifting is time-varying, the affected frequency bands also vary, creating the
sweeping sound effect called phasing or flanging (see chapter 10).

Phase is also important in systems that resynthesize sound on the basis of an analysis of an existing sound. In
particular, these systems need to know the starting phase of each frequency component in order to put
together the different components in the right order (see chapter 13 and Appendix A.) Phase data are
particularly critical in reproducing short, rapidly changing transient sounds, such as the onset of an instrumental
tone.

Finally, much attention has been invested in recent years to audio components that phase shift their input signals
as little as possible, because frequency-dependent phase shifts distort musical signals audibly and interfere with
loudspeaker imaging. (Imaging is the ability of a set of loudspeakers to create a stable "audio picture" where
each audio source is localized to a specific place within the picture.) Unwanted phase shifting is called phase
distortion. To make a visual analogy, a phase-distorted signal is "out of focus."

Now that we have introduced the basic properties of audio signals, we take a comparative look at two
representations for them: analog and digital.

Analog Representations of Sound

Just as air pressure varies according to sound waves, so can the electrical quantity called voltage in a wire
connecting an amplifier with a loudspeaker. We do not need to define voltage here. For the purposes of this
chapter, we can simply assume that it is possible to modify an electrical property associated with the wire in a
fashion that closely matches the changes in air pressure.

An important characteristic of the time-varying quantities we have introduced (air pressure and voltage) is that
each of them is more or less exactly analogous to the other. A graph of the air pressure variations picked up by
a microphone looks very similar to a graph of the variations in the loudspeaker position when that sound is
played back. The term "analog" serves as a reminder of how these quantities are related.

Figure 1.12 shows an analog audio chain. The curve of an audio signal can be inscribed along the groove of a
traditional nhonoeranh record. as shown in figure 1.12. The walls of the erooves on a phonogranh record

< previous page page 20 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 20.html 5/23/2011

< previous page

Prﬁnmolghr?gh Microscopic grooves

in a phonagraph

record
"
Tima —=

\Weaak electronic
slgnal

Preamplifiar |

000 O Slightly amplified
signal
Amplifier | - I

B Greally amplified

O Alr prassura
variaticn [sound)

AR
O U\.—"

Loudspeakear

Figure 1.12
The analog audio chain, starting from an analog waveform
transduced from the grooves of a phonograph record to a
voltage sent to a preamplifier, amplifier, loudspeaker, and
projected into the air.

contain a continuous-time representation of the sound stored in the record. As the needle glides through the
groove, the needle moves back and forth in lateral motion. This lateral motion is then changed into voltage,
which is amplified and eventually reaches the loudspeaker.

Analog reproduction of sound has been taken to a high level in recent years, but there are fundamental
limitations associated with analog recording. When you copy an analog recording onto another analog
recorder, the copy is never as good as the original. This is because the analog recording process always adds
noise. For a first-generation or original recording, this noise may not be objectionable. But as we continue
with three or four generations, making copies of copies, more of the original recording is lost to noise. In
contrast, digital technology can create any number of generations of perfect (noise-free) clones of an original
recording. as we show later.

page 21

This version of Total HTML Converter is unregistered.

page_22 Page 1 of 1
< previous page page 22 next paage >
Page 22

In essence, generating or reproducing digital sound involves converting a string of numbers into one of the
time-varying changes that we have been discussing. If these numbers can be turned into voltages, then the
voltages can be amplified and fed to a loudspeaker to produce the sound.

Digital Representations of Sound

This section introduces the most basic concepts associated with digital signals, including the conversion of
signals into binary numbers, comparison of audio data with MIDI data, sampling, aliasing, quantization, and
dither.

Analog-to-digital Conversion

Let us look at the process of digitally recording sound and then playing it back. Rather than the continuous-
time signals of the analog world, a digital recorder handles discrete-time signals. Figure 1.13 diagrams the
digital audio recording and playback process. In this figure, a microphone transduces air pressure variations
into electrical voltages, and the voltages are passed through a wire to the analog-to-digital converter,
commonly abbreviated ADC (pronounced "A D C"). This device converts the voltages into a string of binmy
numbers at each period of the sample clock. The binary numbers are stored in a digital recording mediuma
type of memory.

Binary Numbers

In contrast to decimal (or base ten) numbers, which use the ten digits 0 9, binary (or base two) numbers use
only two digits, 0 and 1. The term bit is an abbreviation of binary digit. Table 1.1 lists some binary numbers
and their decimal equivalents. There are various ways of indicating negative numbers in binary. In many
computers the leftmost bit is interpreted as a sign indicator, with a 1 indicating a positive number, and a 0
indicating a negative number. (Real decimal or floating-point numbers can also be represented in binary. See
chapter 20 for more on floating-point numbers in digital audio signal processing.)

The way a bit is physically encoded in a recording medium depends on the properties of that medium. On a
digital audio tape recorder, for example, a 1 might be represented by a positive magnetic charge, while a 0 is
indicated bv the absence of such a charge. This is different from an analog

< previous page page 22 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 22.html 5/23/2011

< previous page

Microphona

Preamplifiat

AVA'AV

Air prassura
variaticns

Valtage « o s

r

voltage N/ W\

Lowpas
antialasing

filter

Sample
clock

Recording

Storage

FamrsrdmrAarderieidElasdEia g

Playback

v Tar

GasssssEdBIEEAEEAETARIEEAETEEA R Y

Y

Valtage /Y

ADC

EEREE £

Binary
numbers

budbdapasaman

Memaory

Binany
numbers

DAC

Vaoltage m

Lowpass
smoothing

filta

r

votage A\

Amplifier

Loudspeaker

AA'AV.

vateos AN\

Air pressure
varations

Figure 1.13
Qverview of digital recording and nlavback.

page 23

This version of Total HTML Converter is unregistered.

page_24 Page 1 of 1
< previous page page 24 next paage >
Page 24
Table 1.1 Binary numbers and their decimal equivalents)
Binary Decimal
0 0
1 1
10 2
11 3
100 4
1000 8
10000 16
100000 32
ITI1111I1I1111111 65535

tape recording, in which the signal is represented as a continuously varying charge. On an optical medium,
binary data might be encoded as variations in the reflectance at a particular location.

Digital-to-analog Conversion

Figure 1.14 depicts the result of converting an audio signal (a) into a digital signal (b). When the listener wants
to hear the sound again, the numbers are read one-by-one from the digital storage and passed through a
digital-to-analog converter, abbreviated DAC (pronounced "dack"). This device, driven by a sample clock,
changes the stream of numbers into a series of voltage levels. From here the process is the same as shown in
figure 1.13; that is, the series of voltage levels are lowpass filtered into a continuous-time waveform (figure
1.14c), amplified, and routed to a loudspeaker, whose vibration causes the air pressure to change. Voila, the
signal sounds again.

In summary, we can change a sound in the air into a string of binary numbers that can be stored digitally. The
central component in this conversion process is the ADC. When we want to hear the sound again, a DAC can
change those numbers back into sound.

Digital Audio Recording versus MIDI Recording

This final point may clear up any confusion: the string of numbers generated by the ADC are not related to
MIDI data. (MIDI is the Musical Instrument Digital Interface specificationa widely used protocol for control of
digital music systems; see chapter 21.) Both digital audio recorders and MIDI sequencers are digital and can
record multinle "tracks." but thev differ in the amount and tvne of information that each one handles.

< previous page page 24 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 24.html 5/23/2011

< previous page next paage >

Page 25

Pl /
A SN

Ona cycla

i, o
i

Timg ——

Figure 1.14
Analog and digital representations of a signal.
(a) Analog sine waveform. The horizontal bar
below the wave indicates one period or cycle.
(b) Sampled version of the sine waveform in (a),
as it might appear at the output of an ADC. Each
vertical bar represents one sample. Each sample
is stored in memory as a number that represents
the height of the vertical bar. One period is
represented by fifteen samples. (c) Reconstruction
of the sampled version of the waveform in (b).
Roughly speaking, the tops of the samples are
connected by the lowpass smoothing filter to
form the waveform that eventually reaches the
listener's ear.

When a MIDI sequencer records a human performance on a keyboard, only a relatively small amount of
control information is actually transmitted from the keyboard to the sequencer. MIDI does not transmit the
sampled waveform of the sound. For each note, the sequencer records only the start time and ending time, its
pitch, and the amplitude at the beginning of the note. If this information is transmitted back to the synthesizer on
which it was originally played, this causes the synthesizer to play the sound as it did before, like a piano roll
recording. If the musician plays four quarter notes at a tempo of 60 beats per minute on a MIDI synthesizer,
just sixteen pieces of information capture this 4-second sound (four starts, ends, pitches, and amplitudes).

By contrast, if we record the same sound with a microphone connected to a digital audio tape recorder set to
a sampling frequency of 44.1 KHz, 352,800 pieces of information (in the form of audio samples) are recorded
for the same sound (44,100 x 2 channels x 4 seconds). The storage requirements of digital audio recording
are large. Using 16-bit samples. it takes

This version of Total HTML Converter is unregistered.

page_26 Page 1 of 1
< previous page page 26 next paage >
Page 26

over 700,000 bytes to store a 4-second sound. This is 44,100 times more data than is stored by MIDI.

Because of the tiny amount of data it handles, an advantage of MIDI sequence recording is low cost. For
example, a 48-track MIDI sequence recorder program running on a small computer might cost less than $100
and handle 4000 bytes/second. In contrast, a 48-track digital tape recorder costs tens of thousands of dollars
and handles more than 4.6 Mbytes of audio information per secondover a thousand times the data rate of
MIDI.

The advantage of a digital audio recording is that it can capture any sound that can be recorded by a
microphone, including the human voice. MIDI sequence recording is limited to recording control signals that
indicate the start, end, pitch, and amplitude of a series of note events. If you plug the MIDI cable from the
sequencer into a synthesizer that is not the same as the synthesizer on which the original sequence was played,
the resulting sound may change radically.

Sampling

The digital signal shown in figure 1.14b is significantly different from the original analog signal shown in figure
1.14a. First, the digital signal is defined only at certain points in time. This happens because the signal has been
sampled at certain times. Each vertical bar in figure 1.14b represents one sample of the original signal. The
samples are stored as binary numbers: the higher the bar in figure 1.14b, the larger the number.

The number of bits used to represent each sample determines both the noise level and the amplitude range that
can be handled by the system. A compact disc uses a 16-bit number to represent a sample, but more or fewer
bits can be used. We return to this subiject later in the section on "quantization."

The rate at which samples are takenthe sampling frequencyis expressed in terms of samples per second. This
is an important specification of digital audio systems. It is often called the sampling rate and is expressed in
terms of Hertz. A thousand Hz is abbreviated 1 KHz, so we say: "The sampling rate of a compact disc
recording is 44.1 KHz," where the "K" is derived from the metric term "kilo" meaning thousand.

Reconstruction of the Analog Signal

Sampling frequencies around 50 KHz are common in digital audio systems, although both lower and higher
freauencies can also be found. In anv case.

< previous page page 26 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 26.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_27 Page 1 of 1
< previous page page 27 next paage >
Page 27

50,000 numbers per second is a rapid stream of numbers; it means there are 6,000,000 samples for one
minute of stereo sound.

The digital signal in figure 1.13b does not show the value between the bars. The duration of a bar is extremely
narrow, perhaps lasting only 0.00002 second (two hundred-thousandths of a second). This means that if the
original signal changes "between" bars, the change is not reflected in the height of a bar, at least until the next
sample is taken. In technical terms, we say that the signal in figure 1.13b is defined at discrete times, each such
time represented by one sample (vertical bar).

Part of the magic of digitized sound is that if the signal is bandlimited, the DAC and associated hardware can
exactly reconstruct the original signal from these samples! This means that, given certain conditions, the missing
part of the signal "between the samples" can be restored. This happens when the numbers are passed through
the DAC and smoothing filter. The smoothing filter "connects the dots" between the discrete samples (see the
dotted line in figure 1.13c). Thus, a signal sent to the loudspeaker looks and sounds like the original signal.

Aliasing (Foldover)

The process of sampling is not quite as straightforward as it might seem. Just as an audio amplifier or a
loudspeaker can introduce distortion, sampling can play tricks with sound. Figure 1.15 gives an example.
Using the input waveform shown in figure 1.15a, suppose that a sample of this waveform is taken at each point
in time shown by the vertical bars in figure 1.15b (each vertical bar creates one sample). As before, the
resulting samples of figure 1.15¢ are stored as numbers in digital memory. But when we attempt to reconstruct
the original waveform, as shown in figure 1.15d. the result is something completely different.

In order to understand better the problems that can occur with sampling, we look at what happens when we
change the wavelength (the length of one cycle) of the original signal without changing the length of time
between samples. Figure 1.16a shows a signal with a cycle eight samples long, figure 1.16d shows a cycle two
samples long, and figure 1.16g shows a waveform with eleven cycles per ten samples. This means that one
cycle takes longer than the interval between samples. This relationship could also be expressed as 11/10
cycles per sample.

Again, as each of the sets of samples is passed through the DAC and associated hardware, a signal is
reconstructed (figures 1.16c¢, f, and 1) and sent to the loudspeaker. The signal shown by the dotted line in figure
1.16¢

< previous page page 27 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 27.html 5/23/2011

< previous page

Figure 1.15

Problems in sampling. (¢) Waveform to be
recorded. (b) The sampling pulses; whenever
a sampling pulse occurs, one sample is taken.

(c) The waveform as sampled and stored in
memory. (d) When the waveform from (c) is
sent to the the DAC, the output might appear

as shown here (after Mathews 1969).

is reconstructed more or less accurately. The results of the sampling in figure 1.16f are potentially a little less
satisfactory; one possible reconstruction is shown there. But in figure 1.16i, the resynthesized waveform is
completely different from the original in one important respect. Namely, the wavelength (length of the cycle) of
the resynthesized waveform is different from that of the original. In the real world, this means that the
reconstructed signal sounds at a pitch different from that of the original signal. This kind of distortion is called
aliasing or foldover.

The frequencies at which this aliasing occurs can be predicted. Suppose, just to keep the numbers simple, that
we take 1000 samples per second. Then the signal in figure 1.16a has a frequency of 125 cycles per second
(since there are eight samples per cycle, and 1000/8 = 125). In figure 1.16d, the signal has a frequency of 500
cycles per second (because 1000/2 = 500).

The frequency of the input signal in figure 1.16g is 1100 cycles per second. But the frequency of the output
signal is different. In figure 1.161 you can count ten samples per cycle of the output waveform. In actuality, the
output waveform occurs at a frequency of 1000/10 = 100 cycles per second. Thus the frequency of the
original signal in figure 1.16g has been changed by the sample rate conversion process. This represents an
unaccentable change to a musical sienal. which must be avoided if nossible.

age 28 next page >

previous page

o LLLLTTIIT]

1 Ona cycle of output

i, i

!

Figure 1.16
Foldover effects. At the bottom
of each set of three graphs, the
thick black dots represent samples,
and the dotted line shows the
signal as reconstructed by the
DAC. Every cycle of the sine
waveform (a) is sampled eight
times in (b). Using the same
sampling frequency, each cycle
of (d) is sampled only twice in (e).
If the sampling pulses in (e) were
moved to the right, the output
waveform in (f) might be phase-
shifted, although the frequency
of the output would still be the
same. In (%), there are ten samples
for the eleven cycles in (g). When
the DAC tries to reconstruct a
signal, as shown by the dashed
lines in (i), a sine waveform results,
but the frequency has been
completely changed due to the
foldover effect. Notice the horizontal
double arrow above (g), indicating
one cycle of the input waveform,
and the arrow above (7), indicating
one cvcle of the output waveform.

This version of Total HTML Converter is unregistered.

page_30 Page 1 of 1
< previous page page 30 next paage >
Page 30

The Sampling Theorem

We can generalize from figure 1.16 to say that as long as there are at least two samples per period of the
original waveform, we can assume that the resynthesized waveform will have the same frequency. But when
there are fewer than two samples per period, the frequency (and perhaps the timbre) of the original signal is
lost. In this case, the new frequency can be found by the following formula. If the original frequency is higher
than half the sampling frequency, then:

new frequency = sampling frequency original frequency

This formula is not mathematically complete, but it is sufficient for our discussion here. It means the following.
Suppose we have chosen a fixed sampling frequency. We start with a signal at a low frequency, sample it, and
resynthesize the signal after sampling. As we raise the pitch of the input signal (but still keep the sampling
frequency constant), the pitch of the resynthesized signal is the same as the pitch of the input signal until we
reach a pitch that corresponds to one-half of the sampling frequency. As we raise the pitch of the input signal
even higher, the pitch of the output signal goes down to the lowest frequencies! When the input signal reaches
the sampling frequency, the entire process repeats itself.

To give a concrete example, suppose we introduce an analog signal at 26 KHz into an analog-to-digital
converter operating at 50 KHz. The converter reads it as a tone at 24 KHz, since 50 26 =24 KHz.

The sampling theorem describes the relationship between the sampling rate and the bandwidth of the signal
being transmitted. It was expressed by Harold Nvyquist (1928) as follows:

For any given deformation of the received signal, the transmitted frequency range must be
increased in direct proportion to the signalling speed. . . . The conclusion is that the frequency
band is directly proportional to the speed.

The essential point of the sampling theorem can be stated precisely as follows:

In order to be able to reconstruct a signal, the sampling frequency must be at least twice the
frequency of the signal being sampled.

In honor of his contributions to sampling theory, the highest frequency that can be produced in a digital audio
system (i.e., half the sampling rate) is called the Nyquist frequency. In musical applications, the Nyquist
freauencv is usuallv in the unner range of human hearing. above 20 KHz. Then the

< previous page page 30 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 30.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_31 Page 1 of 1
< previous page page 31 next paage >
Page 31

sampling frequency can be specified as being at least twice as much, or above 40 KHz.

In some systems the sampling frequency is set somewhat greater than twice this highest frequency, because the
converters and associated hardware cannot perfectly reconstruct a signal near half the sampling frequency (an
idealized reconstruction of such a case is shown in figure 1.16f).

Ideal Sampling Frequency

The question of what sampling frequency is ideal for high-quality music recording and reproduction is an
ongoing debate. Part of the reason is that mathematical theory and engineering practice often conflict: converter
clocks are not stable, converter voltages are not linear, filters introduce phase distortion, and so on. (See the
sections on phase correction and oversampling later.)

Another reason is that many people hear information (referred to as "air") in the region around the 20 KHz
"limit" on human hearing (Neve 1992). Indeed, Rudolf Koenig, whose precise measurements set international
standards for acoustics, observed at age 41 that his own hearing extended to 23 KHz (Koenig 1899). It
seems strange that a new digital compact disc should have less bandwidth than a phonograph record made in
the 1960s, or a new digital audio recorder should have less bandwidth than a twenty-year old analog tape
recorder. Many analog systems can reproduce frequencies beyond 25 KHz. Scientific experiments confirm the
effects of sounds above 22 KHz from both physiological and subjective viewpoints (Oohashi et al. 1991;
Oohashi et al. 1993).

In sound synthesis applications, the lack of "frequency headroom" in standard sampling rates of 44.1 and 48
KHz causes serious problems. It requires that synthesis algorithms generate nothing other than sine waves
above 11 KHz (44.1 KHz sampling rate) or 12 KHz (48 KHz sampling rate), or foldover will occur. This is
because any high-frequency component with partials beyond the fundamental has a frequency that exceeds the
Nyquist rate. The third harmonic of a tone at 12.5 KHz, for example, is 37.5 KHz, which in a system running
at 44.1 KHz sampling rate will reflect down to an audible 6600 Hz tone. In sampling and pitch-shifting
applications, the lack of frequency headroom requires that samples be lowpass filtered before they are pitch-
shifted upward. The trouble these limits impose is inconvenient.

It is clear that high-sampling rate recordings are preferable from an artistic standpoint, although they pose
practical nroblems of additional storage

< previous page page 31 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 31.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 32 Page 1 of 1
< previous page page 32 next page >
Page 32

and the need for high-quality audio playback systems to make the effort worthwhile.
Antialiasing and Anti-imaging Filters

In order to make sure that a digital sound system works properly, two important filters are included. One filter
is placed before the ADC, to make sure that nothing (or as little as possible) in the input signal occurs at a
frequency higher than half of the sampling frequency. As long as this filter does the proper work, aliasing
should not occur during the recording process. Logically enough, such a filter is called an antialiasing filter.

The other filter is placed after the DAC. Its main function is to change the samples stored digitally into a
smooth, continuous representation of the signal. In effect, this lowpass anti-imaging or smoothing filter
creates the dotted line in figure 1.14c¢ by connecting the solid black dots in the figure.

Phase Correction

The 1ssue of phase correction came rushing to the fore following the introduction of the first generation of
digital audio recorders and players. Many complained about the harsh sound of digital recordings, a problem
that could be traced to the the brickwall antialiasing filters before the ADCs (Woszczyk and Toole 1983;
Preis and Bloom 1983). They are called brickwall filters because of their steep frequency rejection curve (over
90 dB/octave at the Nyquist frequency, typically). These steep filters can cause significant time-delays (phase
distortion) in midrange and high audio frequencies (figure 1.17). A smaller frequency-dependent delay is
contributed by the smoothing filter at the output of a DAC.

No analog filter can be both extremely steep and phase linear around the cutoff point. (Phase linear means
that there is little or no frequency-dependent delay introduced by the filter.) Hence, the effect of a steep filter
"spills over" into the audio range. For compact disc recordings at a 44.1 KHz sampling rate, the Nyquist
frequency is 22.05 KHz, and a steep antialiasing filter can introduce phase distortion that extends well below
10 KHz (Meyer 1984). This type of phase distortion lends an unnaturally harsh sound to high frequencies.

There are various ways to tackle this problem. The simplest is to trade off the antialiasing properties of the filter
in favor of less phase distortion. A less steep antialiasing filter (40 60 dB/octave, for example) introduces less
phase distortion, but at the risk of foldover for very high frequency sounds. Another solution is to apply a time
correction filter before the ADC to

< previous page page 32 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 32.html 5/23/2011

< previous page

Figure 1.17
Phase distortion caused by an
antialiasing filter. (@) 2.5 KHz
square wave distorted by a
brickwall antialiasing filter. (b)
Phase-corrected square wave.

skew the phase relationships in the incoming signal so as to preserve the original phase relationships in the
recording (Blesser 1984; Greenspun 1984; Meyer 1984). At present, however, the high-technology solution
to phase correct conversion is to use oversampling techniques at both the input and output stages of the
system. We discuss oversampling later.

Quantization

Sampling at discrete time intervals, discussed in the previous sections, constitutes one of the major differences
between digital and analog signals. Another difference is quantization, or discrete amplitude resolution. The
values of the sampled signal cannot take on any conceivable value. This is because digital numbers can only be
represented within a certain range and with a certain accuracy, which varies with the hardware being used. The
implications of this are an important factor in digital audio quality.

Quantization Noise

Samples are usually represented as integers. If the input signal has a voltage corresponding to a value between
53 and 54, for example, then the converter might round it off and assign a value of 53. In general, for each
samble taken. the value of the samnle usuallv differs slightlv from the value

page 33

< previous page

Criginal
waveaform

Sampled
values

Figure 1.18
Effects of quantization. (a) Analog waveform. (b) Sampled version
of the waveform in (a). Each sample can be assigned only certain
values, which are indicated by the short horizontal dashes at the
left. The difference between each sample and the original signal is
shown in (c), where the height of each bar represents the
quantization error.

of the original signal. This problem in digital signals is known as quantization error or quantization noise
(Blesser 1978; Maher 1992; Lipshitz et al. 1992; Pohlmann 1989a).

Figure 1.18 shows the kinds of quantization errors that can occur. When the input signal is something
complicated like a symphony, and we listen to just the errors, shown at the bottom of figure 1.18, it sounds
like noise. If the errors are large, then one might notice something similar to analog tape hiss at the output of a
system.

The quantization noise is dependent on two factors: the signal itself, and the accuracy with which the signal is
represented in digital form. We can explain the sensitivity to the signal by noting that on an analog tape
recorder, the tape imposes a soft halo of noise that continues even through periods of silence on the tape. But
in a digital system there can be no quantization noise when nothing (or silence) is recorded. In other words, if
the input signal is silence, then the signal is represented by a series of samples, each of which is exactly zero.
The small differences shown in figure 1.18c disappear for such a signal, which means that the quantization
noise disannears. If. on the other hand. the inut signal is a pure sinusoid. then

age 34

< previous page next page >
Page 35

R

O A I
Sample points

T T T 1 °r 11
Sample points

Figure 1.19
Comparing the accuracy of 4-bit quantization
with that of 1-bit quantization. The thin
rounded curve is the input waveform. (a) 1-bit
quantization provides two levels of amplitude
resolution, while (b) 4-bit quantization provides
sixteen different levels of amplitude resolution.

the quantization error is not a random function but a deterministic truncation effect (Maher 1992). This gritty
sound, called granulation noise, can be heard when very low level sinusoids decay to silence. When the input
signal is complicated, the granulation becomes randomized into white noise.

The second factor in quantization noise is the accuracy of the digital representation. In a PCM system that
represents each sample value by an integer (a /inear PCM system), quantization noise is directly tied to the
number of bits that are used to represent a sample. This specification is the sample width or quantization
level of a system. Figure 1.19 illustrates the effects of different quantization levels, comparing the resolution of
1-bit versus 4-bit quantization. In a linear PCM system generally, the more bits used to represent a sample, the
less the auantization noise. Figure 1.20

page 35

< previous page

Figure 1.20
Effect of quantization on sine wave smoothness.
(a) "Sine" wave with ten levels of quantization,
corresponding to a moderately loud tone emitted
by a 4-bit system. (b) Smoother sinusoid emitted
by an 8-bit system.

shows the dramatic improvement in sine wave accuracy achieved by adding more bits of resolution.

The quantization measure is confused by oversampling systems, which use a high-speed "1-bit" converter.
The quantization of a system that uses a "1-bit" converter is actually much greater than 1 bit. See the section on

oversampling later.
Low-level Quantization Noise and Dither

Although a digital system exhibits no noise when there is no input signal, at very low (but nonzero) signal levels,
quantization noise takes a pernicious form. A very low level signal triggers variations only in the lowest bit.
These 1-bit variations look like a square wave, which is rich in odd harmonics. Consider the decay of a piano
tone, which smoothly attenuates with high partials rolling offright until the lowest level when it changes character
and becomes a harsh-sounding square wave. The harmonics of the square wave may even extend beyond the
Nvauist freauencv. causing aliasing and introducing new freauencv comnonents that were not in the

page 36

This version of Total HTML Converter is unregistered.

page_37 Page 1 of 1
< previous padge page 37 next paae >
Page 37
B 1
|:| —ta —
40 T T
nEl NN
30 :
dB 1
o +
40 T+ T
o0 4
20 . + . — oo e
1KEz i0kHz |
Frequency J
Figure 1.21

Dither reduces harmonic distortion in a digital system. The top part of the figure shows the
spectrum of 1 KHz sine wave with an amplitude of 1/2 bit. Note the harmonics produced by
the action of the ADC. The lower part shows the spectrum of the same signal after dithering

of'about 1 bit in amplitude is applied before conversion. Only a small amount of third
harmonic noise remains, along with wideband noise. The ear can resolve the sine wave
below the noise floor.

original signal. These artifacts may be possible to ignore if the signal is kept at a low monitoring level, but if the
signal is heard at a high level or if it is digitally remixed to a higher level, it becomes more obvious. Hence it is
important that the signal be quantized as accurately as possible at the input stage.

To confront low-level quantization problems, some digital recording systems take what seems at first to be a
strange action. They introduce a small amount of analog noisecalled ditherto the signal prior to analog-to-
digital conversion (Vanderkooy and Lipshitz 1984; Lipshitz et al. 1992). This causes the ADC to make
random variations around the low-level signal, which smooths out the pernicious effects of square wave
harmonics (figure 1.21). With dither, the quantization error, which is usually signal-dependent, is turned into a
wide-band noise that is uncorrelated with the signal. For decrescendos like the piano tone mentioned
previously, the effect is that of a "soft landing" as the tone fades smoothly into a bed of low-level random noise.

The amount of added noise is usually on the order of 3 dB, but the ear can reconstruct musical tones whose
amplitudes fall

< previous page page 37 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 37.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 38 Page 1 of 1
< previous page page 38 next paage >
Page 38

below that of the dither signal. See Blesser (1978, 1983), Rabiner and Gold (1975), Pohlmann (1989a), and
Mabher (1992) for more details on quantization noise and methods for minimizing it. Lipshitz, Wannamaker, and
Vanderkooy (1992) present a mathematical analysis of quantization and dither. See Hauser (1991) for a
discussion of dither in oversampling converters.

Dither may not be necessary with an accurate 20-bit converter, since the low bit represents an extremely soft
signal in excess of 108 dB below the loudest signal. But when converting signals from a 20-bit to a 16-bit
format, for example, dithering is necessary to preserve signal fidelity.

Converter Linearity

Converters can cause a variety of distortions (Blesser 1978; McGill 1985; Talambiras 1985). One that is
pertinent here is that an n-bit converter is not necessarily accurate to the full dynamic range implied by its n-bit
input or output. While the resolution of an n-bit converter is one part in 2n, a converter's /inearity is the
degree to which the analog and digital input and output signals match in terms of their magnitudes. That is,
some converters use 2n steps, but these steps are not linear, which causes distortion. Hence it is possible to
see an "18-bit converter," for example, that is "16-bit linear." Such a converter may be better than a plain 16-
bit converter, which may not be 16-bit linear. (See Polhmann 1989a for a discussion of these problems.)

Dynamic Range of Digital Audio Systems

The specifications for digital sound equipment typically specify the accuracy or resolution of the system. This
can be expressed as the number of bits that the system uses to store each sample. The number of bits per
sample is important in calculating the maximum dynamic range of a digital sound system. In general, the
dynamic range is the difference between the loudest and softest sounds that the system can produce and is
measured in units of decibels (dB).

Decibels

The decibel is a unit of measurement for relationships of voltage levels, intensity, or power, particularly in audio
systems. In acoustic measurements, the decibel scale indicates the ratio of one level to a reference level,
according to the relation

< previous page page 38 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 38.html 5/23/2011

< previous page page 39 next paage >

Page 39

Decibels Acoustic source

195 Moon rocket at liftoff

Turbojet enging with afterburner

Propeller airliner

Rock muslc concart (sustained)

Th-piace orchestra {momentary paak)
Large jackhammer

Pianc (momentary peak)
Automabile on highway

Shouting voice {average level)

Convarsing volca {awvarage leval)

Whispering vaice
Acoustically treated recording studio

Thrashold of hearing

Figure 1.22
Typical acoustic power levels for various acoustic sources. All
figures are relative to 0 dB = 10 12 watts per square meter.

number of decibels = 10 x log10(level/reference level)

where the reference level is usually the threshold of hearing (10 12 watts per square meter). The logarithmic
basis of decibels means that if two notes sound together, and each note is 60 dB, the increase in level is just 3

dB. A millionfold increase in intensity results in a 60 dB boost. (See chapter 23, Backus 1977, or Pohlmann
1989 for more on decibels.)

Figure 1.22 shows the decibel scale and some estimated acoustic power levels relative to 0 dB. Two
important facts describe the dvnamic range reauirements of a digital audio svstem:

This version of Total HTML Converter is unregistered.

page_40 Page 1 of 1
< previous page page 40 next paage >
Page 40

1. The range of human hearing extends from approximately 0 dB, roughly the level at which the softest sound
can be heard, to something around 125 dB, which is roughly the threshold of pain for sustained sounds.

2. A difference of somewhat less than one dB between the amplitude levels of two sounds corresponds to the
smallest difference in amplitude that can be heard.

These figures vary with age, training, pitch, and the individual.

In recording music, it is important to capture the widest possible dynamic range if we want to reproduce the
full expressive power of the music. In a live orchestra concert, for example, the dynamic range can vary from
"silence," to an instrumental solo at 60 dB, to a tutti section by the full orchestra exceeding 110 dB. The
dynamic range of analog tape equipment is dictated by the physics of the analog recording process. It stands
somewhere around 80 dB for a 1 KHz tone using professional reel-to-reel tape recorders without noise-
reduction devices. (Noise reduction devices can increase the dynamic range at the price of various distortions.
See chapter 10 for more on noise reduction.)

When a recording is produced for distribution on a medium that does not have a wide dynamic range (a mass-
produced analog cassette, for example), the soft passages are made a little bit louder by the transfer engineer,
and the loud passages are made a little bit softer. If this were not done, then the loudest passages would
produce distortion in recording, and the softest passages would be masked by hiss and other noise.

Dvnamic Range of a Digital System
To calculate the maximum dynamic range of a digital system. we can use the following simple formula:
maximum dynamic range in decibels = number of bits < 6.11.

The number 6.11 here is a close approximation to the theoretical maximum (van de Plaasche 1983; Hauser
1991); in practice, 6 is a more realistic figure. A derivation of this formula is given in Mathews (1969) and
Blesser (1978).

Thus, if we record sound with an 8-bit system, then the upper limit on the dynamic range is approximately 48
dBworse than the dynamic range of analog tape recorders. But if we record 16 bits per sample, the dynamic
range increases to a maximum of 96 dBa significant improvement. A 20-bit converter offers a potential
dynamic range of 120 dB, which corresponds roughly to the range of the human ear. And since quantization
noise

< previous page page 40 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 40.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_41 Page 1 of 1
< previous page page 41 next paage >
Page 41

is directly related to the number of bits, even softer passages that do not use the full dynamic range of the
system should sound cleaner.

This discussion assumes that we are using a linear PCM scheme that stores each sample as an integer
representing the value of each sample. Blesser (1978), Moorer (1979b), and Pohlmann (1989a) review the
implications of other encoding schemes, which convert sound into decimal numbers, fractions, differences
between successive samples, and so on. Other encoding schemes usually have the goal of reducing the total
number of bits that the system must store. For some applications, like compact disc media that mix images with
audio data (CD-ROM, CD-J, etc.), it may be necessary to compromise dynamic range by storing fewer bits in
order to fit all needed information on the disk. Another way to save space is, of course, to reduce the sampling
rate.

Oversampling

So far we have mainly discussed linear PCM converters. A linear PCM DAC transforms a sample into an
analog voltage in essentially one straightforward step. In contrast to linear PCM converters, oversampling
converters use more samples in the conversion stage than are actually stored in the recording medium. The
theory of oversampling is an advanced topic, however, and for our purposes here it is sufficient to present the
basic ideas, leaving ample references for those who wish to investigate the topic further.

Oversampling is not one technique but a family of methods for increasing the accuracy of converters. We
distinguish between two different types of oversampling:

1. Multiple-bit oversampling DACs developed for compact disc players in the early 1980s by engineers at the
Philips company (van de Plassche 1983; van de Plassche and Dijkmans 1984)

2. 1-bit oversampling with sigma-delta modulation or a related method as used in more recent ADCs and
DACs (Adams 1990; Hauser 1991)

The first method converts a number of bits (e.g., 16) at each tick of the sampling clock, while the second
method converts just one bit at a time, but at a very high sampling frequency. The distinction between multibit
and 1-bit systems is not always clear since some converters use a combination of these two approaches. That
is. thev nerform multibit overqamnlmg first. and then turn this into a 1-bit stream that is again oversamnled.

< previous page page 41 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 41.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_42 Page 1 of 1
< previous page page 42 next paage >
Page 42

Multiple-bit Oversampling Converters

In the mid-1980s many CD manufacturers used a DAC chip set designed by Philips that introduced the
benefits of oversampling technology to home listeners. These converters take advantage of the fact that digital
filters can provide a much more linear phase response than the steep brickwall analog filters used in regular
DAC:s. (ADCs based on this concept have also been made, but we restrict the discussion here to the DAC
side.) In a CD player, 44,100 16-bit samples are stored for each second per channel, but on playback they
may be upsampled four times (to 176.4 KHz) or eight times (to 352.8 KHz), depending on the system. The is
accomplished by interpolating three (or seven) new 16-bit samples in between every two original samples. At
the same time all of the samples are filtered by a linear phase digital filter, instead of a phase-distorting
brickwall analog filter. (This digital filter is a finite-impulse-response filter; see chapter 10.)

Besides phase linearity, a main benefit of oversampling is a reduction in quantization noiseand an increase in
signal-to-noise ratioover the audio bandwidth. This derives from a basic principle of converters stating that the
total quantization noise power corresponds to the resolution of the converter, independent of its sampling rate.
This noise is, in theory, spread evenly across the entire bandwidth of the system. A higher sampling rate
spreads a constant amount of quantization noise over a wider range of frequencies. Subsequent lowpass
filtering eliminates the quantization noise power above the audio frequency band. As a result, a four-times
oversampled recording has 6 dB less quantization noise (equivalent to adding another bit of resolution), and an
eight-times oversampled recording has 12 dB less noise. The final stage of the systems is a gently sloping
analog lowpass filter that removes all components above, say, 30 KHz, with insignificant audio band phase
shift.

1-bit Oversampling Converters

Although the theory of 1-bit oversampling converters goes back to the 1950s (Cutler 1960), it took many
years for this technology to become incorporated into digital audio systems. The 1-bit oversampling converters
constitute a family of different techniques that are variously called sigma-delta, delta-sigma, noise-shaping,
bitstream, or MASH converters, depending on the manufacturer. They have the common thread that they
sample one bit at a time, but at high sampling frequencies. Rather than trying to represent the entire waveform
in a single samnle. these converters measure the differences between successive samnles.

< previous page page 42 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 42.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_43 Page 1 of 1
< previous page page 43 next paage >
Page 43

1-bit converters take advantage of a fundamental law of information theory (Shannon and Weaver 1949),
which says that one can trade off sample width for sample rate and still convert at the same resolution. That is,
a 1-bit converter that "oversamples" at 16 times the stored sample rate is equivalent to a 16-bit converter with
no oversampling. They both process the same number of bits. The benefits of oversampling accrue when the
number of bits being processed is greater than the number of input bits.

From the standpoint of a user, the rate of oversampling in a 1-bit converter can be a confusing specification,
since it does not necessarily indicate how many bits are being processed or stored. One way to try to decipher
oversampling specifications is to determine the total number of bits being processed, according to the relation:

oversampling factor X width of converter.

For example, a "128-times oversampling" system that uses a 1-bit converter is processing 128 x 1 bits each
sample period. This compares to a traditional 16-bit linear converter that handles 1 x 16 bits, or 8 times less
data. In theory, the 1-bit converter should be much cleaner sounding. In practice, however, making this kind of
determination is sometimes confounded by converters that use several stages of oversampling and varying
internal bit widths.

In any case, all the benefits of oversampling accrue to 1-bit converters, including increased resolution and
phase linearity due to digital filtering. High sampling rates that are difficult to achieve with the technology of
multibit converters are much easier to implement with 1-bit converters. Oversampling rates in the MHz range
permit 20-bit quantization per sample.

Another technique used in 1-bit oversampling converters is noise shaping, which can take many forms
(Hauser 1991). The basic idea is that the "requantization" error that occurs in the oversampling process is
shifted into a high-frequency rangeout of the audio bandwidthby a highpass filter in a feedback loop with the
mput signal. This noise-shaping loop sends only the requantization error through the highpass filter, not the
audio signal.

The final stage of any oversampling converter is a decimator/filter that reduces the sampling rate of the signal to
that required for storage (for an ADC) or playback (for a DAC) and also lowpass filters the signal. In the case
of a noise shaping converter this decimator/filter also removes the requantization noise, resulting in dramatic
improvements in signal-to-noise ratio. With second-order noise shaping (so called because of the second-
order highpass filter used in the feedback loop), the maximum signal-to-noise level of a 1-bit converter is
annroximatelv eauivalent to 15 dB (2.5

< previous page page 43 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 43.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_44 Page 1 of 1
< previous page page 44 next paage >
Page 44

bits) per octave of oversampling, minus a fixed 12.9 dB penalty (Hauser 1991). Thus an oversampling factor
of 29 increases the signal-to-noise ratio of a 16-bit converter by the equivalent of 10 bits or 60 dB.

For more details on the internals of oversampling noise-shaping converters, see Adams (1986, 1990), Adams
et al. (1991), and Fourré, Schwarzenbach, and Powers (1990). Hauser (1991) has written a survey paper that
explains the history, theory, and practice of oversampling techniques in tutorial form and contains many
additional references.

Digital Audio Media

Audio samples can be stored on any digital medium: tape, disk, or integrated circuit, using any digital recording
technology, for example, electromagnetic, magneto-optical, or optical. Using a given medium, data can be
written in a variety of formats. A format is a kind of data structure (see chapter 2). For example, some
manufacturers of digital audio workstations implement a proprietary format for storing samples on a hard disk.
For both technological and marketing reasons, new media and formats appear regularly. Table 1.2 lists some
media and their distinguishing features.

Some media are capable of handling more bits per second and so have the potential for higher-quality
recording. For example, certain digital tape recorders can encode 20-bits per sample with appropriate
converters (Angus and Faulkner 1990). A hard disk can handle 20-bit samples at rates in excess of 100 KHz
(for a certain number of channels at a time), while for semi-conductor media (memory chips) the potential
sample width and sampling rate are much greater.

Another characteristic of media is lifespan. Archival-quality optical disks made of etched tempered glass and
plated with gold will last decades and can be played many thousands of times (Digipress 1991). Magnetic
media like DAT and floppy disks are inexpensive and portable, but not nearly as robust.

An outstanding advantage of digital storage media is that one can transfer the bits from one medium to another
with no loss. (This assumes compatibility between machines and absence of copy-protection circuits, of
course.) One can clone a recording any number of timesfrom the original or from any of the copies. It also
means that one can transfer a recording from an inexpensive serial medium (such as DAT) to a random-access
medium (such as disk) that is more suited to editing and processing. After one is done editing, one can transfer
the samnles back to DAT. These transfers

< previous page page 44 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 44.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_45 Page 1 of 1
< previous paae page 45 next paage >
Page 45
Table 1.2 Digital audio media
Serial or
random
Medium access Notes
Stationary head Serial Typically used for professional multitrack (24, 32, 48 track) recording;
(magnetic tape) several formats coexist; limited editing.
Rotary head Serial Professional and consumer formats; consumer videocassettes are
videotape inexpensive; two machines needed for assembly editing (see Chapter
(magnetic tape) 16); several tape formats (U-matic, Beta, VHS, 8 mm, etc.) and three
incompatible international video encoding formats (NTSC, PAL,
SECAM)
Rotary head Serial Professional Nagra-D format for four-channel location recording.
audiotape
(magnetic tape)
Digital Audio Serial Small portable cassettes and recorders; compatible worldwide; some
Tape (DAT) machines handle SMPTE timecode (see Chapter 21)
(magnetic tape)
Digital Compact Serial A digitat format that can also be used in traditional analog cassette
Cassette (DCC) recorders. Uses data compression. Inferior sound quality as compared
(magnetic tape) to CD format.
Hard disks Random Nonremovable hard disks are faster (several milliseconds access time);
(magnetic and removable hard disks are convenient for backup and transporting of
optical) sound samples. Note: a removable optical hard disk attached to a
computer is usually not the same format as an audio CD, though they
may look similar.
Floppy diskettes Random Floppy disks are small, inexpensive and convenient, but they are slow
(magnetic) and can store only short sound files. Not reliable for long-term storage.
Sony Mini Disc Random A floppy disk format for sound that employs data compression. Inferior
(MD) (magnetic) sound quality with respect to CD format.
Compactdisc ~ Random Small thin disc storing maximum of 782 Mbytes for a 74-minute disc;
(optical) archive-quality disks last decades; can playback images as well as

audio. Various levels of audio quality, depending on the application,
from speech grade (CD-ROM) to verv high

(table continued on next nage)

< previous page page 45 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 45.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_46 Page 1 of 1
< previous page page 46 next paae >
Page 46
(cont.)
Table 1.2
Serial or
random
Medium access Notes

fidelity (20-bit format). Slow access and transfer rate
compared to other random-access media (Pohlmann 1989b, d)
Semiconductor Random Very fast access time (less than 80 nanoseconds typically);
memory (electronic) excellent for temporary storage (for editing) but too expensive
for large databases.

are accomplished through digital input/output connectors (hardware jacks on the playback and recording
systems) and standard digital audio transmission formats (software protocols for sending audio data
between devices; see chapter 22).

Synthesis and Signal Processing

As we have seen, sampling transforms acoustical signals into binary numbers, making possible digital audio
recording. For musical purposes, the applications of sampling go beyond recording, to synthesis and signal
processing. Synthesis is the process of generating streams of samples by algorithmic means. The six chapters
in part IT enumerate the many possible paths to synthesis.

Signal processing transforms streams of samples. In music we use signal processing tools to sculpt sound
waves into aesthetic forms. Typical audio applications of signal processing include the following:

Dynamic range (amplitude) manipulationsreshaping the amplitude profile of a sound
Mixingcombining multiple tracks of audio, including crossfading

Filters and equalizerschanging the frequency spectrum of the sound

Time-delay effectsechoes, chorus effect, flanging, phasing
Convolutionsimultaneous time-domain and frequency-domain transformations
Spatial projection, including reverberation

Noise reductioncleaning un bad recordines

< previous page page 46 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 46.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 47 Page 1 of 1
< previous page page 47 next paage >
Page 47

Sample rate conversionwith or without pitch shift
Sound analysis, transformation, and resynthesis
Time compression/expansionchanging duration without affecting pitch, or vice versa

Although it is a relatively new field, digital signal processing (DSP) has blossomed into a vast theoretical
science and applied art. Parts III and IV explain essential concepts of DSP as they pertain to music.

Conclusion

This chapter has introduced fundamental concepts of digital audio recording and playback. This technology
continues to evolve. In the realms of AD and DA conversion, signal processing, and storage technologywhere
there is always room for improvementwe can look forward to new developments for many vears to come.

While recording technology marches on, the aesthetics of recording take this technology in two opposing
directions. The first is the "naturalist” or "purist" school of recording, which attempts to recreate the ideal
concert hall experience with as little artifice as possible. Listening to these recordings, it is as if we are
suspended in air (where the microphones are) in the ideal listening location, eavesdropping on a virtuoso
performance. The opposite approach, no less valid, is often employed in pop, electronic, and computer music:
the creation of an artificial sound stage in which sources can move and we are presented with illusions such as
sounds emanating from different spaces simultaneously. These illusions are created by the signal processing
onerations described in nart TIT.

< previous page page 47 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 47.html 5/23/2011

< previous page

2
Music Systems Programming

Curtis Abbott

Programming Is Problem-solving
Basic Elements of Programming Languages
Executing Programs
Flow Graphs and Structured Programming
Procedures
Assignment
Control Structures
Alternation
Renetition
Data Structures
Data Tvnes
Twvne Declaration
Tvne-building Onerations
Arravs
Records
Pointers and Their Discontents
Somewhat Abstract Data Tvnes
Obiect-oriented Proeramming
Inheritance
Hiohlv Abstract Data Tvnes

< previous page

Programming Language Themes
Functional Programming
Logic Programming
An Examnle in [isn and Prologo
Constraint Prosramming

Conchiion

next page >
Page 50

This version of Total HTML Converter is unregistered.

page_51 Page 1 of 1
< previous page page 51 next paage >
Page 51

Programming is necessary in order to do anything really new in computer music. The issues raised by
programming not only have practical significance in computer music but are of deep intellectual interest in their
own right. Hence this chapter attempts to impart some perspective on programmingnot only what it is, but why
it is interesting. A single chapter on this vast topic is by necessity condensed, and all we can hope to do is to
provide a glimpse of a large endeavor.

We begin by introducing the basic elements of mainstream programming languages, including control and data
structures. Then we survey selected advanced themes, including functional programming, logic programming,
and constraint programmingall with a view toward music systems programming.

Programming Is Problem Solving

Fundamentally, programming is problem solving. Although many qualities of a program can be assessed,
including practical aspects like speed and aesthetic concerns such as elegance, the most important test of a
program is correctnesswhether it solves the problem it was designed to solve. This criterion is not as simple as
it may first appear. As the problems to which computers are applied become larger and more intertwined with
our daily lives, it becomes increasingly difficult to state problems precisely and unambiguously. Without a
precise and unambiguous statement of the problem, one cannot readily determine whether a program is
correct. Also, when programs are very large or closely coupled to an unpredictable world, it becomes
impossible to test them exhaustively.

Thus, programming is a problem-solving process in which the problems are often difficult to define exactly and
completely. Indeed, the activities that dominate a creative programming task are often different than either
nonprogrammers or programming theorists imaginethinking about how to make vague problem statements
more precise, exploring the consequences of different ways of doing this, discussing the best approach with
others (such as potential users, although this happens all too rarely), and so on.

Music systems programming can have all the technical and intellectual challenges of programming generally.
Composition problems are notoriously difficult to define precisely and completely, so satisfying one composer's
needs may not lead to a universal solution. Sometimes it is better to provide a flexible toolkit that the user can
plav with than it is to attemnt to

< previous page page 51 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 51.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_52 Page 1 of 1
< previous page page 52 next paage >
Page 52

solve all aspects of a musical problem once and for all. Many musical tasks call for interactions with
unpredictable components external to the computer system (such as transducers, synthesizers, or musicians),
typically in real time. The demands of real-time performance put special pressure on the software to handle all
situations in a timely manner.

Basic Elements of Programming Languages

The earliest attempts to program computers resembled the analog synthesizer studio of yore: users set switches
and interconnected the computational units of the computer by means of patch cords (figure 2.1). Today,
programs are written in programming languages. Many programming languages exist, and new ones are
constantly being developed. Generally, a programming language is designed around a particular way of looking
at programming. In this chapter we pay the most attention to the higher-level programming languages that are
widely accepted. We do not deal with low-level, machine-oriented code such as assembly languages. Also,

we limit ourselves for the most part to sequentzal programming. This means programming for computers that
do only one thing at a time. Parallel programs, which run on computers that can perform many operations
concurrently, are becoming increasingly important, but it is easiest to become familiar with programming by
thinking about the sequential case.

We can divide the subject of programming into two broad areas. Control has to do with the actions
performed by the computer and the order in which they occur, while data has to do with objects in the
computer's memory on which these actions are performed. In structuring the discussion this way, we are
acquiescing to the implicit assumption that computers consist of an active part called a central processing unit
(often called CPU or processor) wherein control resides, and a passive part called a memory wherein data
reside. This is a good assumption for today's computers, but as computers evolve, it may become less good.

Executing Programs

A computer obeys precise and detailed machine instructions. A single machine instruction accomplishes little,
but when we string together hundreds or thousands of machine instructions we can accomplish useful work. In
contrast to machine instructions. nrograms are written documents. usuallv

< previous page page 52 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 52.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_53 Page 1 of 1
< previous page page 53 next paage >
Page 53

Figure 2.1
Corporal Irwin Goldstein programming the Eniac computer by setting function switches.
The Eniac was operational in December 1945. This historic computer contained 18,000
vacuum tubes, 70,000 resistors, 10,000 capacitors, and 6,000 switches. It was 30 meters
long, 3 meters high, and 1 meter deep. It is currently in the collection of the Smithsonian
Museum, Washington.
(Photograph courtesy of the Moore School of Electrical Engineering, University of
Pennsylvania.)

written in high-level languages that are easier for human beings to read. Graphical programming languages,
such as Max (Puckette and Zicarelli 1990), make the visual aspect even more explicit. Although the examples
in this chapter are all textual, virtually every point we make could also apply to graphical languages. Before
diving into the details of programming languages, we would do well to understand how high-level language
programs are turned into thousands of machine instructions.

A common way to prepare a program for execution is to use a translatora program that translates the
program you edit into executable form or object code (an ordered group of machine instructions). This
translator is called a compiler. Historically, another approach has been importantthis is to use a program called
an interpreter. An interpreter reads each statement in the program, performs a quick translation of the
statement into machine instructions, and then hands the instructions to the computer to execute directly, before
moving on to the next program statement. Such an interpreter is acting, in a way, as a different kind of
comnuter. one that

< previous page page 53 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 53.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_54 Page 1 of 1
< previous page page 54 next paage >
Page 54

executes a much more sophisticated program than any real, hardware computer. One important argument in
favor of this approach has been that the translation process carried out by a compiler is relatively slow, since a
compiler looks at the program more globally and performs many optimizations based on what it finds. When
developing programs, it is important to minimize the time spent waiting to test changes. However, now that
powerful computers are cheaper, this argument is less compelling, especially since programs executed by
interpreters run much more slowly. (For some programming languages, there are still good arguments in favor
of interpreters, but we do not have space to go into them here.)

Flow Graphs and Structured Programming

The executable form of a program is imperative: it contains the machine instructions that tell the processor what
to do. However, not every instruction is executed each time the program is run because computers have
conditional instructions that run a test to determine which instruction to execute next. Conditional execution
of instructions is a key to the flexibility of computers.

Because instructions may or may not be executed when a program is run, it becomes important to have ways
of thinking about patterns of conditional execution. Mathematicians have a convenient structure that they call
graphs, which computer scientists have adapted as control flow graphs. They are drawn with boxes for the
groups of instructions that are executed indivisibly, and arrows representing possible paths between them.
These drawings are also called flow charts, and we will give some examples shortly. The pattern of instruction
execution that these graphs represent is called the flow of control (or control flow) of a program. In this
tutorial we introduce programming constructs that provide what is called structured flow of control.

The notion of structured flow of control is part of a more general area of structured programming (Dahl,
Dijkstra, and Hoare 1972), which is an evolving set of rules and ideas for good programming style. Next we
highlight various facets of structured programming and show how structured programming ideas apply to data
as well as control.

Procedures

The most basic way of structuring a program is to divide it into a collection of procedures (also known as
functions, subroutines, or sometimes methods). Procedures are ubiquitous in programming. A procedure is a
program unit

< previous page page 54 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 54.html 5/23/2011

< previous page

l

tain part of
program

[

@ O

Procedure Aloha

i

©) &

¥

Procedure Beta

Figure 2.2
Program control flow in a nested
procedure call. The main part of
the program calls procedure Alpha,
which in turn calls Beta. When
Beta is done it returns control to
Alpha, and when Alpha is done it
returns control to the main program.

that can be called or invoked, like a mathematical function such as addition or multiplication. Procedures can
be nested, meaning that one procedure calls another procedure before returning control to the original caller
(figure 2.2).

A procedure can have arguments (again, like a mathematical function) that allow it to be a unit of activity with
flexibility in different circumstances. This is because the arguments to a procedure are specified by the program
part that calls it. Often a procedure also returns a valuea number or more complex data structure that the
calling part can use. This is also analogous to mathematical functionsaddition and multiplication generate values
from their arguments.

Programming languages typically predefine a number of procedures that are the building blocks of larger
programs. Some of these procedures reflect the underlying capabilities of the computer hardware, such as
addition and multiplication of numbers. Others provide access to frequently used input/output facilities, such as
the ability to store and retrieve files from disks or to display characters on a display. Procedures defined by
nrogrammers extend these basic canabilities.

DACC 55

This version of Total HTML Converter is unregistered.

page_56 Page 1 of 1
< previous paqge page 56 next page >
Page 56
Assignment

Another basic capability provided by most programming languages is assignment. Assignment is an operation
that changes the value associated with a variable. In programs, variables are names for places in memory that
hold values. These values can be interpreted in many different waysas numbers, alphabetic characters, machine
instructions, addresses of other memory locations, and so on. Hence, assignment changes the contents of the
memory location corresponding to a variable.

In the C language, assignment is written with an equals sign as in

a=b;

This means the value in the memory location associated with b is copied to the memory location associated
with a. This is very different from what the equals sign means to a mathematician. Some programming

languages try to avoid this confusion by writing assignment with a variation of the equals sign. A common
convention is to write

a:=b;

This is the syntax used in the Pascal language, for example. The control constructs in a language operate mostly
on assignments and procedure calls, so we discuss them next.

Control Structures

Besides procedures and assignment, programming languages have operations that deal with flow of control.
The simplest way that control can flow through a program is sequentially: each program statement is executed
in order.

Alternation

Some control structures allow a program to define two or more alternative execution paths. When control
reaches such a structure, one path is selected, based on a test, and control passes to the selected path.

Control structures based an alternation can be diagrammed in a flow graph as a structure that branches out and
then comes back together again. Figure 2.3 shows several of these structures. using circles to denote tests

< previous page page 56 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 56.html 5/23/2011

< previous page page 57

Succesad @ Fail

Part &

Figure 2.3
Program control flow constructs for alternation. (@) if-then. (b) if-then-else.
(c) case.

page 57

This version of Total HTML Converter is unregistered.

page_58 Page 1 of 1
< previous page page 58 next page >
Page 58
(parts of the program that decide on the alternative to be executed) and square boxes to denote the possible
alternatives.

The simplest case of alternation is when there is one section of a program that we may not want to execute.
This is expressed with an if-then construct. Here is the format of this construct:

if <test> then <program part>

The <test> corresponds to the circle in figure 2.3a, which decides whether or not the < program part> is
going to be executed.

A slightly more complicated instance of alternation is when one of two different program parts should be
selected. This is shown in figure 2.3b. It is expressed in programming languages by extending if-then with else.
The format of this expression is

if <test> then <part 1> else <part 2>

The general case for selecting one of several alternatives is handled in a variety of ways in existing
programming languages. One way is by cascading if-then-else constructs as in the following schematic
example:

if <first test> then <part 1>
else if <second test> then <part 2>

else if <last test> then <part n>

An interesting generalization of this is the guarded command list proposed by Dijkstra (1976). This is a list of
tests and consequents that generalizes the cascaded if-then-else by specifying that if more than one of the tests
succeeds, any one of the associated consequents can be executed. This is potentially useful because it may
allow us to express our thinking about the underlying situation more clearly, without having to specify the order
in which the tests are performed. Despite its elegance, the guarded command list has not become widely used.

Another commonly available construct is case. It is useful when a set of alternatives depends on the value of a
single expression. The format of this construct is something like this:

case <expression>
<first value> <part 1>
<second value> <part 2>

<last value > <part n>

< previous page page 58 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 58.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_59 Page 1 of 1
< previous page page 59 next paage >
Page 59

where the symbol indicates that control is passed to the corresponding program part. This is essentially
equivalent to the following if-then-else cascade:

if <expression>=<first value> then <part 1>
else if <expression>=<second value> then <part 2>

else if <expression>=<last value> then <part n>

The case construct is better not only because it makes the control structure clearer to the human reader but
because the selection of the appropriate program part can often be made much faster by the computer.

Repetition

Another important pattern of control flow is the repetition of a program section over and over again, which is
often called looping. Here it is necessary to specify how many times the repetition occurs and how the
repetition terminates. A typical construct for repetition is the while construct, for which the format is

while <test> do <program part>

The effect of this is to evaluate the % fes # before each execution of the * program part . Repetition
terminates when the * zesz ¢ fails. Figure 2.4 shows the flow graph of a while construct.

Programming languages have many constructs for repetition. Some constructs put the test after the program
part (which guarantees that the program part is executed at least once), and some invert the sense of the test
(which causes repetition until the test succeeds).

A more important variation on this theme are constructs that support the use of auxiliary variables associated
with the repetition. Auxiliary variables are useful for enumerating the elements of collections of data, whether
these collections are organized as matrices, lists, sets, or anything else. Here the possibilities for variation are
enormous, and programming languages exhibit considerable diversity in the constructs that they provide for this
kind of repetition. A canonical example is the for statement in Pascal (Jensen and Wirth 1974). The format of
the for construct is as follows:

for <auxiliary variable> :=<initial value> to
<final value> do <program part>

< previous page page 59 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 59.html 5/23/2011

< previous page

while loop

Succeesd

Figure 2.4
Flow graph of a while construct.
The repetition of Part B continues
while the tested condition is true.
Otherwise the program goes on
to Part C.

Here ! auxiliary variable ! isan integer that is newly created to go with the for statement. Its Linitial value !
is incremented after every repetition. Repetition continues until the variable attains the *final value ! .

The Pascal for construct has special restrictions that provide a good example of the constraints facing language
designers. The restrictions are as follows:

1. The ¢ auxiliary variable ? cannot be changed except in the way shownby incrementing before every
repetition.

2. The <ﬁnal value / 1s only evaluated once, before the repetition starts.

These two rules ensure that when a Pascal for loop begins, the number of repetitions is known. The advantage
of this is that the for loop always terminates and can never run wild. The disadvantage is that, in some
situations, it is inconvenient or impossible to determine in advance how many times the loop should be
executed. (In this case, one must use the while construct in Pascal.)

It is interesting to compare the Pascal for construct with the analogous construct in C (Kernighan and Ritchie
1978). The format of the C for statement is as follows:

page 60 next page >

This version of Total HTML Converter is unregistered.

page_61 Page 1 of 1
< previous page page 61 next paage >
Page 61

for (Kinitialize>; <test>; <increment>)
<program part>

The use of this construct is similar to that of the for statement in Pascal. However, it is easier to understand the
C for statement as a set of instructions for rewriting the components of the construct, because there are no

restrictions as there are in Pascal. In particular, the {initialize part ! is executed, then if the {test? succeeds,

the ¢ program part ? is executed followed by the Lincrement part ? and then back to the & zest ! again. This
for loop can be viewed as a convenience, allowing programmers to write loops in a clear, concise way. By
contrast, the Pascal for loop, by introducing restrictions and an auxiliary variable, is less general, but at the
same time, it is better adapted to the situations it applies to.

These examples hardly exhaust the possibilities for repetitive constructs. Knuth (1974) contains a fascinating
and accessible discussion of iterative constructs.

Data Structures

Inside any computer, data are represented in terms of bits (binary digits) of memory, which can take the values
1 or 0. These bits are organized into bytes and words. Bytes are (almost universally) 8-bit quantities that can
represent many characters in Western alphabets. Hence, bytes are often used to represent alphanumeric
characters.

Words are the "natural units" of operation on data in a computer, so the number of bits in a word varies from
computer to computer. Today the most common computers use 32- or 64-bit words, but this was not true in
the past and may not be true in the future.

It is important to understand the versatility of computer words. To illustrate, consider figure 2.5, which shows a
16-bit word and several interpretations of it. For our purposes, the specific interpretations are unimportant.
Rather, we wish to illustrate that the interpretation of a bit pattern must be known if it is to have any meaning.
This leads to our next concept, data types.

Data Types

The type of a data object (one or more computer words) refers how it is interpreted. Thus we say that the
tvne of a data obiect x is integer. floating-noint number. character. and so on.

< previous page page 61 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 61.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_62 Page 1 of 1
< previous page page 62 next paae >
Page 62
|:E|:| lﬂlllﬂiﬂﬂlﬂﬂlﬂnl
(b} 20480
() 45056
(@) eI

=) omE W al, ds

Figure 2.5
A 16-bit computer word and some possible
interpretations of it. (@) Binary representation.
(b) Two's complement integer. (¢) Unsigned
integer. (d) ASCII characters. (¢) Machine
instruction.

At the hardware level of "raw" computer memory and the machine operations that act on it, only a few types
are available. Thus, if we were to stop a program and randomly look at a word in memory, it would be difficult
to know for sure what that word represents. It could be an sample value, a small number of characters, a
reference to another data object, a machine instruction, or any number of other things. One of the important
jobs of a programming language is to present the programmer with an appropriate notion of type for the kind
of problems the language is designed to solve. Usually this notion is somewhat different from that found at the
machine level and is, as we say, "higher level." Thus, one of the jobs of the programming language
implementation (that is, the compiler or other program that makes programs in a higher-level language
execute on the machine) is to translate between the different notions of type provided by the two levels.

The question of just what notion of type is appropriate has always been controversial, and remains so. We
have hinted that it depends on the kinds of problems the programming language is designed to be used for.
This is generally acknowledged as a matter of principle, but it muddies the waters enough to make precise,
technical discussions difficult. As we shall see, some of the most successful programming languages use a
notion of type that is quite close to that provided by the vast majority of computers. On the other hand, much
of the academic work that drives advances in programming language design has focused on more abstract
notions of tvne.

< previous page page 62 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 62.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_63 Page 1 of 1
< previous paqge page 63 next page >
Page 63
Type Declaration

To make an already confusing subject a good deal more confusing still, there is controversy not only about
what notion of type should be embodied in programming languages but also about whether these types should
be visible in the written form of the program. In languages that make types visible, we say that variables and
procedures are declared, along with their types. A declaration, in this context, is just a statement that a
particular thing (variable, procedure, etc.) has a specific type. For example, we might say

integer vi;,

to declare that the variable v/ has type integer. There are two main arguments for explicit type declarations.
One is that the translators can use the information in the declarations to catch programming errors and make
the program execute more efficiently. The other argument is that declarations make programs easier for people
to understand.

When the types of variables and procedures are not declared in a programming language, it is conventional to
say that the language is untyped. This is extremely misleading! Any programming language embodies some
notion of type, and its translator must deal with computer hardware that embodies a different notion. What is
different about a language without required declarations is that the translator takes full responsibility for
ensuring that the correct interpretation is given to all data according to its implicit notion of type. A common
argument for "untyped" languages is that declaring types is too much work. This argument becomes less
persuasive as programs become larger. longer-lived. and harder to understand.

The programming languages that are most commonly used in industry have type declarations. Several of the
languages discussed in the last part of this chapter (Lisp, Smalltalk, Prolog) have no declarations, or optional
declarations.

To summarize what we have said so far, words of computer memory represent data objects. These objects
are characterized by their type, which determines how the computer interprets the data object. A programming
language also provides a notion of type, which is sometimes quite different from the notion provided at the
machine level. Controversy surrounds the issue of what notion of type is appropriate in programming
languages, and to some extent, the answer depends on what applications the language is intended for. There is
also some controversy about whether types should be declared, or whether such declarations should be
ontional.

< previous page page 63 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 63.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_64 Page 1 of 1
< previous page page 64 next paage >
Page 64

Let us now consider some common properties of types in more detail. The simplest types are atomic, that is,
not divisible into simpler types. Examples of atomic types are integers, floating-point numbers, and characters.
In general, atomic types are directly supported at the machine level of the computer system, in the sense that
the computer has hardware for operations on integers, floating-point numbers, and characters.

Type-building Operations

Programming languages generally provide ways of building up more complex types out of primitive ones. In
examining these type-building operations, we will see some good examples of both abstract and concrete
approaches to types.

Arrays

As a first example consider the array, which is a collection of items that can be selected by looking it up with
an index. All the items in the array have the same type. If 4 is an array of type X, then we select an X by
indexing 4. The indexing operation is usually written A[7], where i is the index. The indexed value can also be
assigned to, thus the statement

A[i] = 1023. 99;

sets the ith element of the floating-point number array 4 to 1023.99. Arrays are usually implemented directly
as blocks of memory in the underlying computer. The indexes provide a convenient way to access different
parts of these memory blocks. As a result of the directness of the implementation, the type of the index value is
restricted in most languages. In some languages, indexes are integers from 0 to some maximum, which is fixed
when the array is initially declared. In other languages, one or another of these restrictions is removed, with
corresponding extra complexity in the implementation.

The form of array declarations depends to some extent on what restrictions are in force in a given language.
For example, in a language with integer indexes starting at 0 and a fixed size, only the size and the item type is
required, so a statement like the following:

array[12] of pitch;

might declare an array of twelve items of type pitch, indexed by the integers from to 0 to 11. If we can specify
both the lower and unner bound. the declaration looks like this:

< previous page page 64 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 64.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_65 Page 1 of 1
< previous page page 65 next paae >
Page 65

array[19, 108] of MIDI-pitch;,

might declare an array of 88 equal-tempered pitches indexed by the integers from 19 to 108 according to the
norms of the MIDI protocol. (See chapter 21 for more on MIDI.)

Atrrays can also be multidimensional. This means that two or more indexes are required to identify an element
of the array. A two-dimensional array can represent a matrix, which mathematically is a linear operator on a
vector space. Since matrices and vector spaces are tremendously important in the scientific use of
mathematics, arrays have always been important in scientific computation.

Arrays are common in computer music programs, since a one-dimensional array can represent the amplitude
values of an audio waveform or envelope, while a two-dimensional array can represent the probabilities in a
Markov chain for composition (see chapter 19) or the pitches of a magic square (showing a twelve-tone row
in all its transpositions).

Records

Arrays provide one way of organizing a collection of similar kinds of data objects. Another type-building
operation handles records, which allow programmers to organize heterogenous types of data objects. Each
distinct kind of information within a record is called a component of the record. Sometimes components are
called slots or members of the record.

Records are useful because they allow programmers to express logical associations, bringing together things
that belong together. Properly used, they make programs easier to understand. For example, one might use a
record to collect information about several aspects of a note: its pitch, register, duration, and so on. Records
are declared as a list of names and types for the components:

record
pitch : character string;
register : integer;
duration : integer;

end

A collection of such records forms a database. Indeed, the notion of records was first made available in the
Cobol programming language, which was designed for databases and related business applications. But
records are much more widelv useful. as we will see.

< previous page page 65 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 65.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_66 Page 1 of 1
< previous page page 66 next paage >
Page 66

Pointers and Their Discontents

Array and record types are fundamental ways of organizing data, since they bring together collections of data
objects into a single, more manageable object. Another fundamental notion is different. A pointer type
represents a reference to a data object, where the reference is viewed as an object itself. Thus, if X is a type,
the type pointer to X is the type of data objects that refer to Xs. Pointers have a dereferencing operation
associated with them. Dereferencing a pointer to X gives an X, namely the one the pointer points to. The
dereferencing operation is often written with an asterisk, so *ptr dereferences the pointer ptr to produce the
value it points to. Given a pointer to something, one can generally change its value with an assignment
statement that uses the dereferencing operation. So pointers are like array elements in this way, and also a bit
like variables.

When we say that a pointer refers to something else, we mean something quite simplemuch simpler than
reference in natural languages. Determining the reference in an English expression like "the one with the click”
can be difficult to decide. In contrast, the notion of reference for pointers is simple. A pointer is implemented
as a memory word whose contents are interpreted as the address of another memory word (namely the
address where the pointed-to object resides). So the pointer refers to whatever is at the memory address that
is the pointer's value.

Although the basic notion is simple, its ramifications are not. The idea of systematically interpreting a computer
memory word as the address of another memory word is a fundamental programming technique. It is
absolutely essential for doing anything useful or interesting with computers. The justification is a little subtle.
Computer memories are addressed in a strictly linear fashion. (That is, there is a memory word whose address
is 0, then a word whose address is 1, and so on.) Most problems do not fit into this linear straightjacket. The
pointer technique (that is, the technique of interpreting memory words as addresses of other memory words)
can be used to make a linearly addressed memory mimic any kind of structure conceivable. Learning in detail
how to do this is one of the important aspects of learning how to program.

In order to see how pervasive this notion of interpreting values as addresses can be, let us go back to the array
for a moment and think about it. Suppose we have an array A of integers (that is, of memory words), indexed
by integers from 0 to 3999. This is like a memory array of 4000 words. Since it both contains and is indexed
by integers, we can do the same trick with it as pointers do with the underlying computer memory. An
exoression like ATAT7211 means to internret the integer at A[721 as an index (address) and

< previous page page 66 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 66.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_67 Page 1 of 1
< previous paqge page 67 next paae >
Page 67
car cdr car ¢dr car odr
IlE—HI—l—-Ill—l—wil
¥
A B c
Figure 2.6

A Lisp list (A B C) represented as three cons cells.
Each cons cell has two pointers. The car of the cons
points to the value, while the cdr points to the next
cons cell in the list. The final cdr points to nil; that
is, the cdr contains zero. This indicates the end of
the list.

return the value of the array at that index. Indeed, this trick with arrays is widespread in languages that do not
have explicit pointer types.

The Lisp programming language does something a good deal more interesting. In so doing it provides a strong
piece of evidence for the claim made previously that pointers can be used to map a linearly addressed array
into any kind of structure at all. (Note: the following description is not strictly true of modern dialects of Lisp,
but accurately reflects their general flavor.) Memory structures in the Lisp world are made up of conseslittle
objects that point to two other objects, which can be other conses or more basic things like numbers (figure
2.6). With conses, you can build lists and a myriad of other strange and wonderful structures. The Lisp world
of conses is implemented in the underlying linear array of computer memory hardware.

Pointers are extremely powerful and useful, but with their power and utility come certain dangers. To see why,
let us go back to that array again. Earlier we wrote 4[4[/2]] to interpret the value of A[/2] as an index. But
suppose the value of A[/2] is not a valid index (i.., an integer between 0 and 3999)? Also, we are now
intepreting elements of 4 in at least two ways, as numbers and as indexes. 4 [12], at least, is an index, and the
item it indexes is a number. There are many ways to make mistakes, many possible confusions.

Because of this danger, the explicit provision of pointers in programming languages has always been a
controversial matter. As with other things, the right answer depends on what the programming language is for.
The C language is among those in which pointers are provided in an unabashed way, but this is in keeping with
its design as a systems programming languageone that hews fairly close to the underlying computer. The
Lisp language does not have pointers at all, although they are ubiquitous in its implementation, partly because
its design goals are so different.

An example of the use of pointers should help make this discussion more concrete. A canonical example is
creating /inked lists. A linked list is a

< previous page page 67 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 67.html 5/23/2011

< previous padge next paae >

Page 68

Figur
A linked list data structure of a melody,
containing quoted strings representing
pitch names. The last pointer value, to
nil, is omitted in this figure. (a) Original
melody. (b) New melody made by
changing the pointer from "B4" and
adding a new element "G5."

collection of records, each of the same type, where each component of each record is a pointer to the
succeeding element in the linked list. Figure 2.6 showed a simple linked list as it is represented implicitly in
Lisp. The following code is an explicit programming example:

linked list node record

pitch : string;

next node : pointer to Iinked 1ist node;
end

This record has two parts: a part called pitch that contains a quoted string, and a pointer called next node
that points to another linked list node record. Linked lists are often drawn as a simple box and arrow
diagram, as in figure 2.7.

A more sophisticated example is a linked list record with two pointers. This models a common data structure
called a binary tree. In a binary tree (figure 2.8), each node can have two branches:

linked 1ist node record
starting time : integer;
left node : pointer to linked 1list node;
right node : pointer to linked list node;

end

A binary tree is a good representation to use when editing the performance schedule of a multiple-voice
composition. Information organized as

next page >

This version of Total HTML Converter is unregistered.

page_69 Page 1 of 1
< previous page page 69 next paage >
Page 69

A 3200 1 5600 B : 3200

[co]

Figure 2.8
A linked list of nodes drawn as a binary tree graph,
in which each node can have two subnodes. The
characters in each node represent a performance
schedule for three musical voices. The numbers
in each node indicate the starting time in
milliseconds of each event.

a binary tree can also be searched efficiently, so this data structure is a common one in computer science
(Knuth 1973b).

These linked list examples bring up a number of issues. One of these is the way linked lists are used. Typically,
linked lists are traversed by a program that follows the pointer in the subnode components until it reaches a
special value that indicates that the end of the list has been reached. One of the things that makes linked lists
useful is that it is easy to add or delete elements at any point in the list, by manipulating the value of the pointer
components. This stands in contrast to arrays, where inserting a value in the middle of the array means that
every value to the right of a new element must be shifted by one index value to the right to make room for the
new element. Growing and shrinking arrays is time-consuming, whereas adding and deleting elements to a
linked list is efficient.

Many programming environments provide standard procedures such as insert_node and delete_node for
manipulating linked list data types. This idea of associating procedures with data types has been important in
programming language research and has been adopted in different ways by two research communities,
working respectively on abstract data types and object-oriented programming. We have more to say
about both later.

Another issue raised by our linked list examples is the following. Suppose that, having defined the binary tree
linked list, we now need another tree in which starting time is not an integer, but a floating-point number. In
most nrogramming laneuages. this can onlv be done bv defining a new data tvne

< previous page page 69 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 69.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 70 Page 1 of 1
< previous page page 70 next page >
Page 70

and giving it a different name. This is bad, for at least two reasons. For the human reader, it tends to obfuscate
the common pattern of use of all these record types (namely, as linked lists). From a technical point of view,
many of the procedures associated with these data types (such as the ones for adding and deleting elements,
and counting the number of elements by traversing the list) are exactly the same across all linked list data types.

One experimental approach to clearing up this difficulty is with polymorphic data types. Roughly, a
polymorphic type takes an argument which is itself a type. A list is a good candidate: we can have lists of
integers, of floating-point numbers, and of infinitely many other types of things.

Somewhat Abstract Data Types

Early work in programming language design concentrated on control issues, for example, what sorts of
alternation and looping constructs to provide. Since then it has become clear that the issues surrounding data
are much more difficult but also more important. This is because data structures in a program model parts of a
world (real or imagined). In view of the importance of data structuring, it should not be surprising that there are
a number of different research strands concerned with it.

One basic insight is that a data type is defined both by data structure (records, arrays, pointers, and so on) and
by the operations it permits. Usually it is only these privileged operations that have access to the dataothers
must obtain access via the operations. We say that the operations encapsulate the data, and this is an
important theme with many benefits.

At least two distinct sets of researchers have developed languages with data types designed around
procedures that encapsulate their data. One group started from otherwise traditional languages and added
constructs for these so-called abstract data types. Examples of this work include CLU (Liskov et al. 1979)
and Alphard (Wulf, London, and Shaw 1976). The most visible success (and perhaps the culmination) of this
work is the language Ada, supported by the United States Government (Department of Defense 1980).

Obiject-oriented Programming

Another, more diverse group proposed to put even more emphasis on the data and developed an approach
called object-oriented programming. They also developed new ways of talking about their approach to
emphasize its radicalness. In particular, data elements are called objects. Data types are called classes (at
least. most of them are. although more traditional data

< previous page page 70 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 70.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_71 Page 1 of 1
< previous page page 71 next paage >
Page 71

types can also be present in object-oriented languages). The operations associated with a class are usually
called methods. Calling a procedure is called sending a message. This difference is more than cosmetic.
Whereas in traditional programming, all the arguments to a procedure have equal status, in object-oriented
programming there is a privileged argument, which is the receiver of the message (the object to which it is
sent).

Object-oriented programming was pioneered in the language Simula (Dahl and Nygaard 1966; Dahl, Dijkstra,
and Hoare 1972), which was designed for programming discrete event simulations, in which time acts on a
collection of simulated real-world objects. Although Simula was the first object-oriented programming
language, Smalltalk (Goldberg and Robson 1983a, b) has probably been the most influential. Developed over
a long period of time at the Xerox Palo Alto Research Center (PARC) and ParcPlace Systems, it has several
essential properties that are synonymous with object-oriented programming. Smalltalk is dynamically typed,
in the sense that variables can hold objects of any class, so that the appropriateness of a message must be
checked when it is sent. In other words, Smalltalk is one of those languages sometimes misleadingly referred to
as "untyped." Also, Smalltalk-80, the current version of Smalltalk, includes a superb programming environment
and provides excellent support for developing graphical user interfaces for music (Krasner 1980; Pope
1991a.b; Scaletti 1989a.b: Scaletti and Hebel 1991).

Inheritance

One of the important contributions of object-oriented programming to data structuring is the idea of class
inheritance. This means defining new types as variants of existing types (classes), rather than starting from
scratch. Inheritance is especially appropriate when one class specializes another.

For example, suppose in a performance program we have a class that manages musical keyboards. We call
this a Keyboard class. It has operations (methods) for translating a key number into a pitch, and for starting a
note when a key is struck. Now suppose we need to hook up a velocity-sensitive keyboard (i.e., a keyboard
that plays louder if you hit the keys harder and therefore faster). Since there are velocity data to be conveyed,
we need to rewrite the note-starting operation, but the key-to-pitch translation operation need not change. We
can use inheritance to make a Velocity-Sensitive-Keyboard class that inherits all the data parts of the
Keyboard class, possibly adding new ones to deal with velocity information, and that inherits the translation
oneration while redefining the note-startine oneration.

< previous page page 71 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 71.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_72 Page 1 of 1
< previous page page 72 next paage >
Page 72

A less commonly available technique in object-oriented programming is multiple inheritance. This means that
a class can inherit behavior (and data parts) from several other classes. This is an especially useful technique
for "mixing in" functionalityadding a new feature to an existing class. For example, we might write a note-
recording mixin that could be added to any class that has a note instantiation operation, and that would
redefine the operation automatically so that its parameters are remembered in an auxiliary array of records
each time it is called.

As typical programs grow larger and more complicated, it becomes more important to have facilities for
organizing them, incrementally changing them, and so on. Such facilities are a large part of what object-
oriented programming is about, and so as the complex1ty and size of problems increases, object-oriented
programming has become 1ncreasmg1y visible and influential in the computing world. Earlier languages
(especially Smalltalk) have been somewhat handicapped by slow execution speed, as well as the difficulty of
learning them. Consequently, several languages have been developed that add object-oriented facilities to
existing mainstream programming languages such as C or Pascal. An example of this trend is the C++ language
(Soustrop 1991).

Highly Abstract Data Types

None of the approaches to abstract data types described so far is highly abstract. For example, if you define a
class of sets, you must define exactly one implementation (i.e., collection of operations) for it. All sets use that
implementation. However, there are a half dozen good ways to implement sets, each appropriate for sets of
different sizes and domains. No programming language to date adequately addresses this problem. However,
there is another research strand in which the implementation of a data type is given in a very abstract form,
which can be viewed as leaving open the possibility for the underlying automatic system to decide how best to
implement it. In such approaches, one merely specifies what properties the operations of the data type must
satisfy, rather than saying exactly how to execute them. Most commonly, the specification is done with
equations. The standard example, which appears hundreds of times in the research literature in this area,
describes a stack. A stack is a data structure with three operations, push, pop, and top. The push operation
stores an object on the stack; pop removes the most recently stored value, and top retrieves the most recently
stored value.

These simple rules can be translated into equations as follows. Suppose S is a stack and x is a value. Just two
eauations define the stack's behavior. given some backeround assumntions:

< previous page page 72 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 72.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 73 Page 1 of 1
< previous padge page 73 next page >
Page 73
pop (push (S, x))=S
pop (push (S, x))=x

The first equation says that pop undoes push. The second says that push has to remember the pushed value so
that top can retrieve it.

The key idea behind this abstraction of abstract data types is to interpret the equational definitions as
instructions that can effectively carry out the operations so defined. Thus, the equations, which make no
reference to computer words and are not instructions in any obvious way, nevertheless become operationally
effective. Indeed, we say this is an operational interpretation of the equations. From a programming point of
view, what is important about this is that we have described the behavior of a stack in a very abstract way,
with equations, rather than giving instructions for obtaining that behavior. This is an example of what is called
declarative programming, discussed later in this chapter.

A good deal of mathematical theory stands behind operational interpretations of equations. The usual first step
is to give a preferred orientation to the equations, so that they become rewrite rules, or in other words,
simplication rules for expressions involving the given terms (push, pop, and top in our example). Note that in
the example, the right-hand sides of both equations are much simpler than the left-hand sides. Thus, the
preferred orientation is left to right. Often an orientation can be assigned, sometimes it can even be done
automatically. Sometimes, however, it cannot be done at all, much less automatically. For example, a common
algebraic law is commutativity. For the addition operator (+), it is written as the following equation:

xXty=vytux.

The intuitive interpretation is that the order of the arguments to the addition operator does not matter. This
equation cannot be given a preferred orientation; the intuitive reason is that neither side is simpler than the
other.

The automatic interpretation of very abstract specifications is a desirable goal, but one which is fraught with
difficulties. These include many theoretical results showing that various problems are strictly unsolvable, in the
sense defined by Godel, Turing, and other mathematical pioneers. One of these is the problem of determining
whether a preferred orientation can be automatically assigned to equations.

Besides this, the equational level of abstraction does not address the practical problem raised at the beginning
of this section concerning abstract data types, such as sets, for which different implementations are appropriate
according to the circumstances. For this, a more down-to-earth approach is needed. So far, no one has done
a convincing iob of it.

< previous page page 73 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 73.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_74 Page 1 of 1
< previous paage page 74 next page >
Page 74
Programming Language Themes

Up until now we have explored programming by looking at control and data aspects. We conclude with a brief
survey of three of the most important themes in programming research: functional programming, logic
programming, and constraint programming,

Functional Programming

Functional programming is an approach that says the most important tool we can bring to bear in our
problem-solving efforts is the mathematical function. A mathematical function defines a certain kind of
relationship between a collection of inputs (called arguments) and a single output (called the result), namely,
that for each distinct set of arguments, there is a unique output that is always the same. This is obviously an
appropriate point of view when we are concerned with arithmetic operations on numbers. It can be extended
in a natural way to many other situations, and it is, indeed, a way of thinking that is often useful. At the
beginning of this chapter we stated that procedures are the single most important organizational device for
programs, and procedures most closely mimic mathematical functions.

Functional programming is distinguished by its insistence that its "procedures" should depend not at all on
context, but should always return the same result given the same inputs. This becomes problematical with
operations that receive input from the outside world (as all interactive computer music programs do) or that
affect the outside world in some way (and any program that does not is useless). Naturally, functional
programming advocates have answers to this obiection and others.

Rather than delve any further into controversies about the universality of the functional approach, we wish to
point out some of the inarguably valuable work that has been done under its auspices. Functional programming
arises historically from mathematical work by Church, who invented the lambda calculus (Church 1941) in
order to study functions. The lambda calculus inspired the Lisp programming language, which was originally a
functional language.

Much important knowledge that is now considered basic to computing came out of research that resulted from
the juxtaposition of computers and the lambda calculus. For example, this research clarified the notion of the
recursive procedure and affected programming practice by showing how in many cases such procedures can
be extremely useful. (A recursive procedure is one that can be viewed operationally as calling itself, or more
abstractlv.

< previous page page 74 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 74.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_75 Page 1 of 1
< previous page page 75 next paage >
Page 75

as being defined partly in terms of itself. It is also possible to have mutual recursion, in which a collection of
procedures are all defined in a mutually referential way.) Another valuable strand of work identified a set of
ordering strategies for evaluation of functions and their arguments, demonstrating that the most obvious and
cheapest implementation strategy may lead to a nonterminating computation in cases where a more expensive
strategy would not.

Historically, functional programming surfaced early, in the form of Lisp. As Lisp developed, it became more
pragmatic and lost its functional purity. The most widely used modern form of Lisp is Common Lisp, a large
programming environment that brings together several Lisp dialects (Steele 1984). Scheme, a dialect of Lisp
that has itself spawned other dialects, attempts to restore the benefits of compactness and purity (Abelson and
Sussman 1985).

For a time functional programming was viewed as inefficient and therefore impractical. But functional
programming has resurfaced, and an important motive is its potential use on parallel computers. There are a
couple of reasons for this. First, if functions really are "pure" (in the sense of always returning the same result
for the same arguments), then all the arguments to a function can be evaluated in parallel, and all of their
arguments, and so on. Second, functional programming appears to be well suited to problems where large,
uniform data sets (such as vectors, matrices, etc.) are acted on by functional operators; this leads to many
opportunities for so-called "data parallelism" (Hillis 1987).

Logic Programming

The lambda calculus is one important mathematical development in this century. The predicate calculus is an
even more important development, although one that began in the last century. A predicate can be thought of
as a function that returns either true or false, and predicate calculus is the foundation of mathematical logic.

As functional programming is inspired by the lambda calculus, so logic programming is inspired by the
predicate calculus. The predicate calculus can be viewed as a language with which to talk about mathematical
theorems. An operational interpretation of the predicate calculus would be a theorem prover. Indeed, this is
the correct abstract point of view to take with logic programming.

Earlier we described the equational approach to data types as a very abstract one, and pointed out that many
problems within that area are

< previous page page 75 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 75.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_76 Page 1 of 1
< previous page page 76 next paage >
Page 76

strictly unsolvable. This is also true of the predicate calculus. Thus, the game in logic programming is to find
restricted forms of the predicate calculus or restricted theorem-proving strategies that make things
computationally tractable while still retaining whatever advantage there might be to stating things in an abstract
form similar to mathematical theorems.

By far the most popular logic programming language is Prolog (Clocksin and Mellish 1987), and the source of
its popularity is a set of clever ideas that allow Prolog programs to be executed quite efficiently. A Prolog
program can be viewed as a set of declarations in a restricted form of the predicate calculus called Horn
clauses. By stating relations among predicates, these declarations in effect define the predicates. The idea is
similar to the equational definitions we saw earlier, except that the relationship between left and right sides is
not one of equality but of implication. That is, the left-hand side is true if the right-hand side is true. One
important difference between this approach and functional programming is that the predicates can represent
arbitrary relations as easily as functions. Relations are less restrictive than functions, which makes them more
flexible representational vehicles in some cases.

A Prolog program attempts to solve a problem involving a predicate defined by the program, some of whose
arguments are variables. The program's job is to find one or more solutions for the variables. It does this in a
predetermined way, searching the declarations (known as clauses) one after the other. When the left-hand
side of a clause matches the problem, the Prolog interpreter attempts to solve the right-hand side, in just the
same way it goes about solving the original problem. If it reaches an impasse (no clause matches), it
backtracks, going back to the last clause that matched, giving up on it, and trying to find another matching
rule.

The backtracking behavior built into Prolog is very powerful, and convenient for problems involving searches,
but also somewhat unpredictable and difficult to control. In practice, many predicates do not require
backtracking, and various mechanisms have been introduced to restrict it.

An Example in Lisp and Prolog

In order to convey a more concrete image of both Lisp and Prolog, we present definitions of a simple function
in the two languages. This is the function that concatenates two lists, known as append. In Lisp, append takes
two lists as arguments and produces the concatenated list as a result. In Prolog, everything is a predicate, and
all the interest 1s in the arguments, so append has three arguments, the third being for the "answer." The Lisp
definition is in fieure 2.9a: the Prolog definition in ficure 2.9b.

< previous page page 76 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 76.html 5/23/2011

< previous page

(a)

(defun append (listl 1list2)
(cond ((null 1listl) 1list2)
((null 1list2) 1listl)
(t (cons (car listl) (append (cdr listl) 1list2)))))

append ([], x, x
append (x, [],
append ([x1 | x2

)
xX) .
1y

y, [x1 | z]) :- append (x2, vy, z).

Figure 2.9
Definition of the append operation. (a) Lisp definition. (b) Prolog definition.

Let us first explain these definitions. In both Lisp and Prolog, lists are a fundamental data type. In Lisp,
expressions are surrounded by parentheses. The first line introduces the definition of a function (defun), giving its
name and arguments. The definition consists of a single expression whose first word is cond. This is a conditional
expression, which tests the first part of each subexpression in turn, executing and returning the rest of the first
such expression that evaluates to true. Thus, it says in essence: if /is¢/ is null (empty), return /is¢2; if lis¢2 is null,
return /ist; otherwise ("t" stands for "true"), return this:

(cons (car 1istl) (append (cdr 1istl) 1ist2))

This complicated expression glues together the first element of /is¢/ with the result of appending the rest of list/
to /ist2. In other words, this is a recursive definition.

In Prolog, predicate arguments are in parentheses after the name, which is a more traditional mathematical
notation. Names starting with a capital letter are variables. Usually clauses have many variables, and append is no
exception. The first rule in figure 2.9b says that if the initial argument is the empty list (written "[]"), then the
second and third arguments are equal. (Remember that the third argument is the "result.") The second rule makes
a similar statement about first and third arguments. The third rule, which applies only if neither list is empty
(because the first two rules are checked

DAoEC 77

This version of Total HTML Converter is unregistered.

page 78 Page 1 of 1
< previous page page 78 next paage >
Page 78

first by a Prolog interpreter), says essentially the same thing as the complicated expression in the Lisp program,
in a slightly different way. The right-hand side of the rule is equivalent to Lisp's recursive call to append.

No three-line program can tell you very much about a programming language, and this simple example is only
intended to give a flavor. Modern Lisp and Prolog compilers execute these programs very quickly.

Constraint Programming

Constraint programming is related to logic programming, although the relationship is obscured by history.
Whereas research in logic programming has always been dominated by people well versed in mathematical
logic, constraint programming originated in a more intuitive and less rigorous fashion. Most work in this area
has been concentrated in certain areas of interest: the solving of geometric constraints (such as keeping lines
parallel or perpendicular, etc.), graphics systems (Sutherland 1963; Borning 1979), or constraints imposed by
Ohm's law in electrical circuits (Sussman and Steele 1981). More recently, researchers trained in mathematics
have explored seriously the relationships between logic programming and constraints (Jaffar and Lassez 1987,
Saraswat 1992).

A major attraction of constraint programming is that it allows a programmer to state rules with a higher degree
of complexity than Prolog's Horn clauses, or similar logic programming formalisms, and have them solved by
more powerful, but also more specialized, interpreters. Ultimately, constraint programming could give
programmers very flexible access to a large variety of specialized, mathematical algorithms, which currently
require a great deal of expertise to choose and use.

In a slightly different vein, constraints are a potentially useful way of formulating problems that require
incremental solutions: a given state of the system is represented as a particular solution of a constraint system,
and any perturbation causes a new solution to be arrived at, one which typically changes relatively few of the
components of the previous solution. Incremental algorithms have become increasingly important in recent
years as applications have become more interactive and graphical.

Conclusion

We have tried to convey a sense of what programming isthe issues it involves and the breadth of approaches
that can be taken to it. At the

< previous page page 78 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 78.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_79 Page 1 of 1
< previous page page 79 next paage >
Page 79

outset, we observed that programming is fundamentally a problem-solving activity and discussed why the basic
criterion of correctness may sometimes be difficult to apply. Many people enjoy problem-solving for its own
sake. But surely one of the reasons programming is interesting is due to the nature of computer applications
rather than in programming itself. Computers work according to simple rules that can be characterized in
mathematical terms, and many programming formalisms and languages are derived from, or at least inspired
by, mathematics, as has been amply discussed in this chapter. On the other hand, computers are physical
objects and can be connected to the real world in interesting ways. When a computer controls a synthesizer,
the result is a sound whose properties are much richer than any mathematical formalism (at least to the ear).
The programmability of computers allows this abstract, mathematical simplicity to be juxtaposed with real
activity and effect. The pleasure of coaxing a prototype music system to work is a pleasure of musical
engineering. Programming is unlike earlier varieties of engineering in the ethereal nature of its materials, but it
remains an engineering discipline in the way work is rewarded with tangible results.

Another aspect of the excitement is the interdisciplinary nature of computing. This is a point that we need not
belabor to those interested in computer music. Computer science itself has borrowed ideas from many areas of
mathematics and engineering, and has returned a number of favors as well. As computers become more deeply
embedded in our society, the need to marry knowledge of computing with knowledge in other domains
becomes more common.

Although computers have only been around for a few years, hundreds of programming languages and variants
have been implemented, and thousands more proposed. With all these languages, people unfamiliar with the
subject might think the territory has been thoroughly explored. Nothing could be farther from the truth.
Programming is evolving continuously and quickly, entrenched languages like Cobol and Fortran
notwithstanding. Thus, while many of the ideas and techniques described in this chapter will remain valid in a
decade or two, some may not. Almost certainly, the traditional approach to programming, to which the bulk of
our attention was devoted, will become relatively less important. As things evolve, some of the techniques
described here that remain valid and useful will nevertheless come to be seen in a different light, and used in
different ways.

Probably the most important realization to come out of the accumulated experience with programming so far is
that it is a problem of oreanizing and managine comnlexitvto a far greater extent than was initiallv realized.

< previous page page 79 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 79.html 5/23/2011

< previous paqge page 80 next paae >

Page 80

The structured programming movement, which has played an important role for more than 20 years now, can
be viewed as a reaction to this. The languages it engendered now dominate programming practice and form the

basis of this chapter. Object-oriented programming has the potential to carry these gains a few steps farther
since many of its key contributions have to do with managing complexity. Constraint programming, and
nerhans some forms of logic nroerammine. mav well come to nlav a more imnortant role as well.

next page >

< previous page next paae >

Page 81

I
SOUND SYNTHESIS

This version of Total HTML Converter is unregistered.

page_83 Page 1 of 1
< previous page page 83 next paage >
Page 83

Overview to Part 11

On the 26th of September, 1906, the doors of "Telharmonic Hall" opened at 39th Street and Broadway in
New York. An audience of nine hundred listeners entered to hear a concert by a new instrument, the massive
Telharmonium of Thaddeus Cahill, the first and largest sound synthesizer ever developed (Cahill 1897; Rhea
1984; Weidenaar 1991). Powered by electricity, but without the benefit of electronic amplification, the
smoothly rotating tone generators of the Telharmonium emitted synthetic tones purer than naturesinusoidal
waves in the precise integer ratios of just intonation. Moved by the spectacle of this demonstration, the elderly
American author Mark Twain (1835 1910) wrote: "Every time I see or hear a new wonder like this I have to
postpone my death right off. I couldn't possibly leave this world until I have heard it again and again!" (Rhea
1972).

At about the same time, the imagination of an Italian mystic named Luigi Russolo gravitated toward another
sound worldthe impurity of industrial noises and the destructive sounds of warfare, as outlined in his emotional
manifesto The Art of Noises (Russolo 1916). Russolo constructed a battery of acoustical noise instruments
and performed with them in a series of highly publicized concerts in the 1920s. These dramatic opening acts
set the stage for more systematic exploration of electronic sound synthesisa development that has profoundly
affected the theory and the practice of music in the twentieth century.

Prior to digital techniques, electronic methods of sound production fell into two broad categories: (1) oscillating
vacuum or gas tubes or oscillating transistor circuits, and (2) rotating or vibrating systems using a mechanical,
electrostatic, or photoelectric driving source.

The invention of the stored program electronic digital computer in the 1940s opened the way for the present
era of sound synthesis. Since the first experiments of Max V. Mathews in 1957, dozens of sound synthesis
techniques have been invented. Modern sound synthesis is a grab bag of techniques. As in the field of
comnuter eranhics. it is difficult to sav at anv time

< previous page page 83 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 83.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_84 Page 1 of 1
< previous page page 84 next paage >
Page 84

which techniques will flourish and which will fade over time. This situation is fueled by competitive pressures in
the music industry, making it inevitable that synthesis methods fall in and out of fashion, sometimes repeatedly.
The catalog of synthesis techniques is bound to grow, since no one method can satisfy the needs of all
musicians. Tastes and preferences vary, and the quest for new musical sensations and experiences continues.

Organization of Part I1

Part II explains the basic principles of contemporary synthesis methods. The demands of teaching drive these
tutorials. We present an intuitive description of how synthesis techniques work, without cluttering the
presentation with details of a particular manufacturer's implementations. Given the constantly-changing
technical environment, this seems the most prudent course. In a teaching environment, this text should be
supplemented with practical work using available tools, be they synthesizers, interactive synthesis applications,
or synthesis languages.

The material here builds on an understanding of basic terms such as frequency, amplitude, and spectrum, and
assumes a grounding in the fundamental principles of digital audio as presented in chapter 1.

We have grouped different techniques into eleven categories within five chapters of similar length. In some
cases the grouping within a chapter is arbitrary; for example, chapter 5 presents three techniques that are not
closely related. The order of the chapters is not entirely arbitrary, however. Chapter 3 is a prerequisite to the
rest of the part, and the discussion proceeds roughly from basic to more exotic approaches. Note that chapter
20 describes two additional methods of synthesis that are mainly of historical/novelty interest: radio wave
demodulation and pulse tone synthesis.

One pitfall for composers of electronic and computer music is over-reliance on a single synthesis approach.
Any technique employed to the exclusion of others can result in overuse and clichéunless it is guided in an
unusually virtuosic manner. Synthesis techniques by themselves do not solve all problems of orchestration in
computer music composition. One of the most promising extensions of synthesis is a counterpoint of different
techniquesforming compound sound objects through mixing and signal processing (Roads 1985f). Part I1I
exnlores these tonics.

< previous page page 84 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 84.html 5/23/2011

< previous page

3
Introduction to Digital Sound Synthesis

With John Strawn

Backeground: Historv of Digital Sound Svnthesis
Music I and Music 1T
The Unit Generator Concent
Fixed-waveform Table-lookup Svnthesis
Changing the Frequency
Algorithm for a Digital Oscillator
Table-lookup Noise and Interpolating Oscillators
Time-varvine Waveform Svnthesis
FEnvelones. [Init Generators. and Patches
Granhic Notation for Svnthesis Instruments
UJsine Envelones in Patches
Software Svnthesis
Instrument Editors and Svnthesis Laneouages
Comnutational Demands of Svnthesis
Non-real-time Svnthesis
Sound Files

Real-time Digital Sunthegis

< previous page page 86

Comparing Non-real-time Svnthesis with Real-time Svnthesis
Specifving Musical Sounds
Sound Obiects
Example of the Specification Problem for Additive Synthesis
The Musician's Interface
Musical Input Devices
Performance Software
Editors
T.ancuages

Algorithmic Comnosition Programs

Conchicion

next paage >

Page 86

This version of Total HTML Converter is unregistered.

page_87 Page 1 of 1
< previous page page 87 next paage >
Page 87

This chapter outlines the fundamental methods of digital sound production. Following a brief historical
overview, we present the theory of table-lookup synthesisthe core of most synthesis algorithms. We next
present strategies for synthesizing sounds that vary over time. This is followed by a practical comparison
between "software synthesis" and "hardware synthesis," that is, between computer programs and dedicated
synthesizers. Finally, we survey the various means of specifying musical sounds to a computer or synthesizer.
The only prerequisite to this chapter is a knowledge of basic concepts of digital audio as explained in chapter
1.

Background:
History of Digital Sound Synthesis

The first experiments in synthesis of sound by computer began in 1957 by researchers at Bell Telephone
Laboratories in Murray Hill, New Jersey (David, Mathews, and McDonald 1958; Roads 1980; Wood 1991).
In the earliest experiments, Max V. Mathews (figure 3.1) and his colleagues proved that a computer could
synthesize sounds according to any pitch scale or waveform, including time-varying frequency and amplitude
envelopes.

Their first programs were written directly in terms of machine instructions for a giant IBM 704 computer
fabricated with vacuum tube circuits (figure 3.2). The 704 was a powerful machine for its day, with a 36-bit
wordlength and a built-in floating-point unit for fast numerical operations. It could be loaded with up to 32
Kwords of magnetic core memory. Computers were so rare at that time that the synthesis calculations had to
be carried out at IBM World Headquarters in New York City, because Bell Telephone Laboratories did not
have a suitable machine. After traveling to Manhattan to compute a sound, Mathews and his associates would
return to Bell Telephone Laboratories with a digital magnetic tape. There, a less powerful computer with an
attached 12-bit vacuum tube "digital-to-sound converter" transformed the samples on the tape into audible
form. This converter, designed by Bernard Gordon, was at that time the only one in the world capable of
sound production (Roads 1980).

Music I and Music 11

The Music I program developed by Mathews generated a single waveform: an equilateral triangle. A patient
user could specify notes only in terms of pitch, waveform, and duration (Roads 1980). The psychologist
Newman Guttman made one comnosition with Music I. a mononhonic etude called

< previous page page 87 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 87.html 5/23/2011

< previous page

Max V. Mathews, 1981.
(Photograph courtesy of AT&T Bell
Laboratories.)

Figure 3.2
IBM 704 computer, 1957.
(Photograph courtesv International Business Machines.)

Dage 88

next page >

Page 88

This version of Total HTML Converter is unregistered.

page_89 Page 1 of 1
< previous page page 89 next paage >
Page 89

In a Silver Scale written on 17 May 1957 (Guttman 1980). This was the first composition synthesized by the
process of digital-to-analog conversion. Even in this first piece, the potential of the computer to generate any
frequency precisely was recognized. Guttman was interested in psychoacoustics and used the piece as a test of
the contrast between an "equal-beating chromatic scale" described by Silver (1957) and just intonation.

Max Mathews completed Music II in 1958; it was written in assembly language for the IBM 7094 computer,
a transistorized and improved computer along the lines of the IBM 704. The 7094 ran several times faster than
the older vacuum tube machines. It was thus possible to implement more ambitious synthesis algorithms. Four
independent voices of sound were available, with a choice of sixteen waveforms stored in memory. Music 11
was used by several researchers at Bell Telephone Laboratories, including Max Mathews, John Pierce, and
Newman Guttman.

A concert of the new "computer music" was organized in 1958 in New York City, followed by a discussion
panel moderated by John Cage. Later that year Guttman played his computer-synthesized composition Pitch
Variations at Hermann Scherchen's villa in Gravesano, Switzerland, where Iannis Xenakis was in the audience
(Guttman 1980).

The Unit Generator Concept

One of the most significant developments in the design of digital sound synthesis languages was the concept of
unit generators (UGs). UGs are signal processing modules like oscillators, filters, and amplifiers, which can
be interconnected to form synthesis instruments or patches that generate sound signals. (Later in this chapter
we discuss UGs in more detail.) The first synthesis language to make use of the unit generator concept was
Music II1I, programmed by Mathews and his colleague Joan Miller in 1960. Music III let users design their
own synthesis networks out of UGs. By passing the sound signal through a series of such unit generators, a
large variety of synthesis algorithms could be implemented relatively easily.

Music N Languages

Since the time of Music 111, a family of software synthesis systemsall based on the unit generator concepthave
been developed by various researchers. Music IV was a recoding of Music III in a new macro assembly
language developed at Bell Laboratories called BEFAP (Tenney 1963, 1969). Music V, developed in 1968,
was the culmination of Max Mathews's efforts in software synthesis (Mathews 1969). Written almost
exclusivelv in

< previous page page 89 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 89.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_90 Page 1 of 1
< previous page page 90 next paage >
Page 90

Fortran IVa standard computer languageMusic V was exported to several dozen universities and laboratories
around the world in the early 1970s. For many musicians, including the author of this book, it served as an
introduction to the art of digital sound synthesis.

Taking Music IV or Music V as a model, others have developed synthesis programs such as Music 4BF,
Music 360, Music 7, Music 11, Csound, MUS10, Cmusic, Common Lisp Music, and so on. As a general
category these programs are often referred to under the rubric of "Music N" languages (see chapter 17).

Fixed-waveform Table-lookup Synthesis

As chapter 1 explains, digital synthesis generates a stream of numbers representing the samples of an audio
waveform. We can hear these synthetic sounds only by sending the samples through a digital-to-analog
converter (DAC), which converts the numbers to a continuously varying voltage that can be amplified and
sent to a loudspeaker.

One way of viewing this process is to imagine a computer program that calculates the sample values of a
waveform according to a mathematical formula, and sends those samples, one after the other, to the DAC.
This process works fine, but it is not the most efficient basis for digital synthesis.

In general, musical sound waves are extremely repetitive, a fact that is reflected in the notions of frequency and
pitch. Hence a more efficient technique is to have the hardware calculate the numbers for just one cycle of the
waveform and store these numbers in a list stored in memory, as shown in figure 3.3. Such a list is called a
wavetable. To generate a periodic sound, the computer simply reads through the wavetable again and again,
sending the samples it reads to the DAC for conversion to sound.

This process of repeatedly scanning a wavetable in memory is called table-lookup synthesis. Since it typically
takes only a few nanoseconds for a computer to read a value from memory, table-lookup synthesis is much
quicker than calculating the value for each sample from scratch. Table-lookup synthesis is the core operation
of a digital oscillatora fundamental sound generator in synthesizers.

Let us now walk through the valley of table lookup. Suppose that the value of the first sample is given by the
first number in the wavetable (location 1 in figure 3.3). For each new sample to be produced by this simple
synthesizer, take the next sample from the wavetable. At the end of the wavetable, simply go back to the
beginning and start reading out the sam-

< previous page page 90 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 90.html 5/23/2011

< previous page

Wavatable sample valuas

Wayelabie index values

1234|567

Figure 3.3
Graphical depiction of wavetable-lookup synthesis. The list 0 24 in the lower portion are numbered locations or "t
values." An audio sample value is stored in memory for each index point. The samples are depicted as the rectangle
a sine wave in the top portion. For example, Wavetable[0] = 0, and Wavetable[6] = 1. To synthesize the sine
computer looks up the sample values stored in successive index locations and sends them to a DAC, looping
table renetitivelv.

DACC 91

This version of Total HTML Converter is unregistered.

page 92 Page 1 of 1
< previous page page 92 next page >
Page 92

ples again. The process is also called fixed-waveform synthesis because the waveform does not change over
the course of a sound event.

For example, let us assume the table contains 1000 entries, each of which is a 16-bit number. The entries are
indexed from 0 to 999. We call the current location in the table the phase index value, with reference to the
phase of the waveform. To read through the table the oscillator starts at the first entry in the table
(phase_index = 0) and moves by an increment to the end of the table (phase_index =999). At this point the
phase index "wraps around" the ending point to the beginning of the wavetable and starts again.

Changing the Frequency

What is the frequency of the sound produced by table-lookup synthesis? It depends on the length of the
wavetable and the sampling frequency. If the sampling frequency is 1000 samples per second, and there are
1000 numbers in the table, the result is 1000/1000: 1 Hz. If the sampling frequency is 100,000 Hz, and the
table contains 1000 entries, then the output frequency is 100 Hz, since 100,000/1000 = 100.

How is it possible to change the frequency of the output signal? As we have just seen, one simple way is to
change the sampling frequency. But this strategy is limited, particularly when one wants to process or mix
signals with different sampling rates. A better solution is to scan the wavetable at different rates, skipping some
of the samples in it. This, in effect, shrinks the size of the wavetable in order to generate different frequencies.

For example, if we take only the even-numbered samples, then we go through the table twice as fast. This
raises the pitch of the output signal by an octave. If we skip two samples, then the pitch is raised further (by an
octave and a fifth, to be exact). In the table-lookup algorithm, the increment determines the number of samples
to be skipped. The increment is added to the current phase location in order to find the next location for
reading the value of the sample. In the simplest example, where we read every sample from the table, the
increment is 1. If we read only the odd- or even-numbered samples in the table, then the increment is 2.

Algorithm for a Digital Oscillator

We could say that the oscillator resamples the wavetable in order to generate different frequencies. That is, it
skips values in the table by an increment added to the current phase location in the wavetable. Thus the most
bhasic oscillator algorithm can be exnlained as a two-sten nrogram:

< previous page page 92 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 92.html 5/23/2011

This version of Total HTML Converter is unregistered.

page_93 Page 1 of 1
< previous page page 93 next paae >
Page 93

1. phase index = modL(previous phase + increment)
2. output = amplitude X wavetable [phase index]

Step (1) of the algorithm contains an add and a modulo operation (denoted modLZ). The modulo operation
divides the sum by the table length L and keeps only the remainder, which is always less than or equal to L.
Step (2) contains a table lookup and a multiply. This is relatively little computation, but it assumes that the
wavetables are already filled with waveform values.

If the table length and the sampling frequency are fixedas is usually the casethen the frequency of the sound
emitted by the oscillator depends on the value of the increment. The relationship between a given frequency
and an increment is given by the following equation, which is the most important equation in table-lookup
synthesis:

L x frequency
sampling Frequency

(1)

nerement =

For example, if tablelength L is 1000 and sampling frequency is 40,000, while the specified frequency of the
oscillator is 2000 Hz, then the increment is 50.

This implies the following equation for frequency:

merement % sampling Frequency

7 (2)

[frequency =

So much for the mathematical theory of digital oscillators. Now we confront the computational realities.

Table-lookup Noise and Interpolating Oscillators

All the variables in the previous example were multiples of 1000, which led to a neat integer result for the value
of the phase index increment. However, for most values of the table length, frequency, and sampling frequency
in equation 1, the resulting increment is not an integer, but rather a real number with a fractional part after the
decimal point. However, the way we look up a value in the wavetable is to locate it by its index, which is an
integer. Thus we need to somehow derive an integer value from the real-valued increment.

The real value can be truncated to yield an integer value for the table index. This means to delete the part of
the number to the right of the decimal noint. so a number like 6.99 becomes 6 when it is truncated.

< previous page page 93 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 93.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 94 Page 1 of 1
< previous page page 94 next page >
Page 94
Table 3.1 Phase index values in an oscillator wavetable, calculated and truncated
Phase index
Calculated Truncated
1.000 1
2.125 2
3.250 3
4.375 4
5.500 5
6.625 6
7.750 7
8.875 8
10.000 10
11.125 11
12.250 12
13.375 13
14.500 14
15.625 15
16.750 16
17.875 17
19.000 19

Suppose that we use an increment of 1.125. Table 3.1 compares the calculated versus the truncated
increments. The imprecision caused by the truncation means that we obtain a waveform value near to, but not
precisely the same as, the one we actually need. As a result, small amounts of waveform distortion are
introduced, called table-lookup noise (Moore 1977; Snell 1977b). Various remedies can reduce this noise. A
larger wavetable is one prescription, since a fine-grain table reduces lookup error. Another way is to round
the value of increment up or down to the nearest integer instead of simply truncating it, in this case, an
increment of 6.99 becomes 7, which is more accurate than 6. But the best performance is achieved by an
interpolating oscillator. This is more costly from a computational standpoint, but it generates very clean
signals.

An interpolating oscillator calculates what the value of the wavetable would have been if it were possible to

reference the wavetable at the exact phase specified by the increment. In other words, it interpolates between
the entries in the wavetable to find the one that exactly corresponds to the specified phase index increment

(figure 3.4).

With interpolating oscillators, smaller wavetables can yield the same audio quality as a larger noninterpolating
oscillator. Consider that for a 1024-entry wavetable used by an interpolating oscillator, the signal-to-noise
ratio for a sine wave is an excellent 109 dB (worst-case). as comnared with the

< previous page page 94 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 94.html 5/23/2011

< previous page

|

Amp.

o7 {2'?.5}

Indax —

Figure 3.4
Action of an interpolating oscillator.
The graph shows two x-points in a
wavetable, at positions 27 and 28. The
oscillator phase increment indicates
that the value should be read from
location 27.5, for which there is no
entry, so the interpolating oscillator
calculates a y-value in between the
values for 27 and 28.

abysmal 48 dB for a noninterpolating oscillator using the same size wavetable (Moore 1977). These figures
pertain to the case of linear interpolation; even better results are possible with more elaborate interpolation
schemes (Chamberlin 1985: Crochiere and Rabiner 1983: Moore 1977: Snell 1977b).

This concludes our introduction to fixed-waveform table-lookup synthesis. The next section shows how
aspects of synthesis can be varied over time.

Time-varying Waveform Synthesis

So far we have seen how to produce a sine wave at a fixed frequency: well and good. Since the maximum
value of the sine wave does not change in time, the signal has a constant loudness. This is not terribly useful for
musical purposes, since one can only control pitch and duration, leaving no control over other sound
parameters. Even if the oscillator reads from other wavetables, they repeat ad infinitum. The key to more
interesting sounds is time-varying waveforms, achieved by changing one or more synthesis parameters over
the duration of a sound event.

Envelopes, Unit Generators, and Patches

To create a time-varying waveform, we need a synthesis instrument that can be controlled by
envelopestfunctions of time. For example, if the amplitude of the sound changes over its duration, the curve that
the amplitude follows is called the amplitude envelope. A general way of designing a synthesis instrument is to
imagine it as a modular system, containing a number of specialized signal-processing units that together create
a time-varving sound.

DAZEC 95

This version of Total HTML Converter is unregistered.

page_96 Page 1 of 1
< previous page page 96 next paae >
Page 96

The unit generator is a fundamental concept in digital synthesis. A UG is either a signal generator or a signal
modifier. A signal generator (such as an oscillator) synthesizes signals such as musical waveforms and
envelopes. A signal modifier, such as a filter, takes a signal as its input, and it transforms that input signal in
some way.

To construct an instrument for sound synthesis, the composer connects together UGs into a patch. The term

"patch" derives from the old modular analog synthesizers in which sound modules were connected via patch
cords. Of course, when a program is making music, the connections are all done by the software; no physical
wires or cables are connected. But if a UG produces anumber at its output, that number can become the input
to another UG.

Graphic Notation for Synthesis Instruments

Now we introduce the graphic notation that is often used in publications on digital sound synthesis to illustrate
patches. This notation was invented to explain the operation of the first modular languages for digital sound
synthesis, such as Music 4BF (Howe 1975) and Music V (Mathews 1969), and is still useful today.

The symbol for each unit generator has a unique shape. Figure 3.5 shows the graphic notation for a table-
lookup oscillator called osc, a basic signal generator. It accepts three inputs (amplitude, frequency,
waveform) and produces one output (a signal). The oscillator reads from a single wavetable that remains
unchanged as long as the oscillator plays. (More complicated oscillators can read through several wavetables
over the course of an event; see chapter 5 on multiple wavetable synthesis).

In figure 3.5 the top right input to the oscillator is frequency. The top left input determines the peak amplitude
of the signal generated by the oscillator. The box to the left is the wavetable /7 containing a sine wave. (Note:
In

Amplitude
Freguency
|
|
Q5G

Y
Output signal

Figure 3.5
Graphical notation for an oscillator.
See the text for exnlanation.

< previous page page 96 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 96.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 97
< previous page

page 97

Page 1 of 1
next page >

Page 97

some implementations, instead of frequency, the value fed directly to the oscillator is a raw phase increment.
Since phase increment is not a musically intuitive parameter, we assume here that the system automatically

takes care of conversions from frequency to phase increment according to equation 1.)

Using Envelopes in Patches

If we supply a constant number (say, 1.0) to the amplitude input of an oscillator, then the overall amplitude of
the output waveform is constant over the duration of each event. By contrast, most interesting sounds have an
amplitude envelope that varies as a function of time. Typically, a note starts with an amplitude of 0, works its
way up to some maximum value (usually normalized to be no greater than 1.0), and dies down again more or
less slowly to 0. (A normalized wave is one that has been scaled to fall within standard boundaries such as 0 to
1 for amplitude envelopes, or 1 to + 1 for other waves.) The beginning part of the envelope is called the

attack portion, while the end of the envelope is called the release.

Commercial analog synthesizers used to define amplitude envelopes in four stages: attack, (initial) decay,
sustain (a period that depends, for example, on how long a key on a keyboard is depressed), and release.
The usual acronym for such a four-stage envelope is ADSR (figure 3.6). The ADSR concept is useful for
describing verbally the overall shape of an envelope, for example, "Make the attack sharper." But for
specifying a musical envelope, a four-stage limit is anachronistic. Amplitude shaping is a delicate operation, so

more flexible envelope editors allow musicians to trace arbitrary curves (see chapter 16).

f

Amp.

!ﬁ-nack
Deca
y Relzase
Sustain {or final
ﬁd
Time —=

F————— Duration of event ——————

Graph of a simple ADSR amplitude envelope, showing the way

Figure 3.6

the amnlitude of a note changes over its duration.

< previous page

page 97
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 97.html 5/23/2011

next page >

This version of Total HTML Converter is unregistered.

page 98 Page 1 of 1
< previous page page 98 next paage >
Page 98

The instrument of figure 3.5 can be easily adapted to generate a time-varying amplitude by hooking up an
envelope to the amplitude input of the oscillator. We are now closer to controlling the oscillator in musical
terms. If we set the duration and the curve of the envelope, then the envelope controls the amplitude of each
note.

To design manually an envelope for each and every event in a composition is too tedious. What we seek is a
simple procedure for generating an envelope that can scale itself to the duration of diverse events. One solution
is to take another table-lookup oscillator (labeled env_osc in figure 3.7, but this time fill its wavetable /7 with
values of the amplitude envelope between 0 and 1 instead of a sine wave. Rather than finding the increment
from the frequency, the envelope oscillator derives the increment from the duration of the note. If the duration
of the note is 2 seconds, for example, the "frequency" of envelope oscillator is 1 cycle per 2 seconds, or 0.5
Hz. Thus, the env_osc reads through the amplitude table just once over this period. For each sample, env_osc
produces at its output a value derived from the stored envelope 1. This value becomes the left-hand
(amplitude) input for the sine wave oscillator, osc. After osc has looked up a sample in its wavetable /2, the
value of the sample is scaled inside osc by whatever appears at its amplitude input, which in this case comes
from env osc.

Figure 3.7a is a typical instrument as defined in a synthesis language of the type described in chapter 17. Figure
3.7b shows another way to characterize the same structure, which is perhaps more common in synthesizers.
This figure replaces the envelope oscillator with the simple envelope generator env_gen. The env_gen takes in
a duration, peak amplitude, and a wavetable; it reads through the wavetable over the specified duration,
scaling it by the specified peak amplitude.

As the reader might guess, we could also attach an envelope generator to the frequency input of osc to obtain
a pitch change such as vibrato or glissando. Indeed, we can interconnect oscillators and other unit generators
in a wide variety of ways in order to make different sounds. Interconnected oscillators are the basis of many of
the synthesis techniques described in chapters 4 through 8.

Software Synthesis

So far we have discussed digital synthesis in abstract terms. The next sections describe synthesis systems in
more practical terms. The most precise and flexible approach to digital sound generation is a software
svnthesis

< previous page page 98 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 98.html 5/23/2011

< previous padge next page >
Page 99

Peak amplitude

Duration

amp_gnvelope
i 2 Frequancy

g2

"

oulout_signal

Feak
amplitude

Curation
BENY_Qen

Amp_envelope

Freguency

i2 |
Qs
i -

autput_signai

Figure 3.7
Time-varying amplitude control of oscillator. (a)
Oscillator as envelope generator. The upper
oscillator env_osc is employed as an envelope
generator to control the amplitude of the sine
wave generated by the lower oscillator
osc. env_osc assumes that it will complete one
cycle. This structure is found in synthesis
languages. (b) An equivalent structure to (a)
using a simple envelope generator unit env_gen.
This unit takes in duration, peak amplitude, and
waveform. This structure is more typical of
svnthesizers.

This version of Total HTML Converter is unregistered.

page 100 Page 1 of 1
< previous page page 100 next paage >
Page 100

program running on a general-purpose computer. Software synthesis means that all of the calculations
involved in computing a stream of samples are carried out by a program that can be changed in arbitrary ways
by the user. A canonical example of software synthesis is the Music V language (Mathews 1969) or its many
Music N variants.

Software synthesis stands in contrast to hardware synthesis, which carries out synthesis calculations using
special circuitry. Hardware synthesis has the advantage of high-speed real-time operation, but the flexibility
and size of the synthesis algorithm are limited by the fixed design of the hardware. A typical example is a fixed-
function commercial keyboard synthesizer. Its internal circuits cannot necessarily be reconfigured to perform a
technique developed by a rival manufacturer, for example.

The distinction between software and hardware synthesis blurs in some cases. Consider the case of a system
built around a programmable digital signal processor (DSP) with a large memory. It may be possible for
such a system to run the same type of synthesis software as a general-purpose computer. (See chapter 20 for
more on the architecture of DSPs.)

In any case, all of the pioneering work in computer music was carried out via software synthesis. Today a
variety of synthesis programs run on inexpensive personal computers. Good-quality ADCs and DACs are
either built in or readily available as accessories. A great advantage of software synthesis is that a small
computer can realize any synthesis methodeven the most computationally intensiveprovided that the musician
has the patience to wait for results. Thus, with little else needed but musical will, computers are primed and
ready for high-quality music synthesis.

Instrument Editors and Synthesis Languages

Contemporary software synthesis programs can be divided into two categories: (1) graphical instrument
editors and (2) synthesis languages. With a graphical instrument editor, the musician interconnects icons on
the display screen of a computer, making patches. Each icon stands for a UG. (Chapter 16 presents this
subject and gives examples.)

With a language, the musician specifies sounds by writing a text that is interpreted by a synthesis program.
Figure 3.8a shows a textual representation of the same instrument shown in figure 3.7a. The example uses a
simple hypothetical synthesis language that we call Music 0. The symbol means "is assigned to the value of."
For example, the output of env_osc is assigned (routed) to the signal variable amp_envelope. Then the value
of amn envelove. at each samnle veriod. is fed into the amolitude innut of the osc module.

< previous page page 100 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 100.html ~ 5/23/2011

< previous page page 101

(a)

Instrument 1
/* env_osc arguments are wavetable, duration, amplitude */
amp_envelope env_osc fl p3 1.0;
/* osc arguments are wavetable, frequency, amplitude */
output signal osc f2 p4 amp envelope;
out output signal;

EndInstrument 1;

(b)

/* Score line for Instrument 1 */
/* pl p2 p3 pd */
il 0] 1.0 440

Figure 3.8

Textual representation of the instrument and score. («) Instrument corresponding to figure 3.7.

The remarks between the characters "/*" and "*/" are comments. The parameter fields (beginning
with "p") indicate values that will be derived from an alphanumeric score, as in (b) p3 specifies
duration, and p4 is frequency. Notice that the third argument to the second oscillator (the amplitude)
is supplied by the amp _envelope signal generated by the first oscillator. (b) Score for instrument

in (a). The first field is the instrument number. The second parameter field indicates the start time,
the third duration. and the fourth freauencv.

next page >

This version of Total HTML Converter is unregistered.

page 102 Page 1 of 1
< previous page page 102 next page >
Page 102

Figure 3.8b presents a simple score that supplies parameters to this instrument. (Chapter 17 explains the basic
syntax and features of synthesis languages.)

Computational Demands of Synthesis

Every step in a synthesis algorithm takes a certain amount of time to execute. For a complicated synthesis
algorithm, a computer cannot always complete the calculations necessary for a sample in the interval of a
sample period.

To make this point more concrete, see the steps below that are necessary for calculating one sample of sound
by the table-lookup method.

1. Add increment to current wavetable lookup location to obtain new location.

2. If the new location is past the end of the wavetable, subtract the wavetable length. (In other words, perform
a modulo operation.)

3. Store the new location for use in calculating the next sample. (See step 1.)
4. Look up the value in the wavetable at the new location.

5. Multiply that value by the amplitude input.

6. Send the product to the output.

The important point here is that each step takes some amount of time to perform. For example, it might take a
computer one microsecond to perform the calculations above. But if we are using a sampling rate of 50,000
samples per second, the time available per sample is only 1/50,000th of a second, or 20 microseconds
(20,000 nanoseconds). This means that it is difficult for the computer to complete the calculations necessary
for more than a few simple oscillators in real time. If the process is made more complicated, by adding filters,
delays, more table lookups, random functions, or the time needed to interact with a musician, even one
instrument may become impossible to realize in real time. What do we mean by real time? In this context, real
time means that we can complete the calculations for a sample within the duration of one sample period.

Non-real-time Synthesis

Certain synthesis and signal-processing techniques are costly from a computational standpoint and are
therefore inherentlv difficult to realize in real

< previous page page 102 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 102.html ~ 5/23/2011

This version of Total HTML Converter is unregistered.

page 103 Page 1 of 1
< previous page page 103 next paage >
Page 103

time. This means there is a delay of at least a few seconds between the time we start computing a sound and
the time that we can listen to it. A system with such a delay is called a non-real-time system.

Non-real-time synthesis was the only option in the early days of computer music. For example, a two-minute
portion of J. K. Randall's Lyric Variations for Violin and Computer, realized between 1965 and 1968 at
Princeton University (Cardinal Records VCS 10057), took nine hours to compute. Of course, if a small
mistake was made, the entire process would have to be repeated. Even though this was a laborious process, a
handful of dedicated composers with access to the proper facilities were able to create lengthy computer-
synthesized works of music (see also Tenney 1969; Von Foerster and Beauchamp 1969; Dodge 1985; Risset
1985a).

Sound Files

Because it may longer than one sample period to compute each sample, software synthesis programs generate
a sound file as their output. A sound file is simply a data file stored on a disk or tape. After all the samples for
a composition are calculated, then the sound file can be played through the DAC to be heard.

A sound file contains a header text and numbers representing sound samples. The header contains the name
of the file and relevant information about the samples in the file (sampling rate, number of bits per sample,
number of channels, etc.). The samples are usually organized in data structures called frames; if there are N
channels, each frame contains N samples. Thus, the sampling rate really indicates the number of frames per
second.

As in other computer applications, different file formats coexist. The need to convert between formats is a
practical fact of life in computer music studios.
Real-time Digital Synthesis

Just as computers have become faster, smaller, and cheaper, digital synthesis technology has also become
more efficient. As early as the mid-1970s it was practical to build digital synthesizers (albeit bulky ones) that
were fast enough to do all of the calculations necessary for a sample within the duration of one sample period.
With advances in circuit technology, the bulky synthesizers of the past have been replaced by tiny integrated
circuits (1Cs or chins) that can realize multivoice svnthesis aleorithms in real time.

< previous page page 103 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 103.html ~ 5/23/2011

This version of Total HTML Converter is unregistered.

page 104 Page 1 of 1
< previous paae page 104 next page >

Page 104

Keyboard or other

input device
Microphone -L
MIDH M]D'I
Host intoriace [~ oud cometore
CEI'I"IpIJ[EF

ADC DSP board X
| DAC amplifier

I
Digital |
°. X

Digital Disk for sound file
audio and program Loudspeaker
recarder storage

Figure 3.9
Simplified overview of a typical digital recording and synthesis facility.
Musicians communicate with the synthesizers using keyboards or
other input devices, or through programs running on the host
computers. Sound can be recorded via the ADC and stored on disk
for later playback through the DACs. In a computer equipped for
multimedia production, all of the components except the MIDI
keyboard may be built into the computer.

Figure 3.9 shows an overview of a real-time computer music synthesis system. This system actually has three
ways of generating digital sound: (1) non-real-time software synthesis calculated on the computer, with sound
from the DAC, (2) real-time synthesis calculated on the digital signal processing (DSP) board, with sound from
the DAC, and (3) real-time synthesis using a synthesizer controlled via the Musical Instrument Digital Interface
(MIDI; see chapter 21).

An obvious advantage of a real-time synthesizer is that musical input devices (also called performance
controllers) such as musical keyboards, footpedals, joysticks, buttons, and knobs can be attached to it, so
that the sound can be modified by the musician as it is being produced. Sequencers and score editors make it
possible to record and edit these performances, and patch editors running on the computer can change the
synthesis and signal-processing patches at any time.

Real-time systems are discussed in more detail throughout this book. In particular, part V discusses the
internals of digital synthesizers and the MIDI protocol, and chapters 14 and 15 deal with performance
controllers

< previous page page 104 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 104.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 105 Page 1 of 1
< previous page page 105 next paage >
Page 105

and performance software (see also Alles 1977a; Buxton et al. 1978; Strawn 1985¢; Roads and Strawn
1985; Roads 1989).

Comparing Non-real-time Synthesis with Real-time Synthesis

Non-real-time software synthesis was the original method of digital sound generation, and it still has a place in
the studio. As we have stressed before, the advantage of software synthesis using a patchable music language
is programmability and therefore musical flexibility. Whereas commercial real-time synthesizers often set
factory-supplied limits, software synthesis is open-ended, letting users create personalized instruments or
arbitrarily complex synthesis algorithms. Many new and experimental synthesis and signal-processing methods
are available only in the form of non-real-time software.

Another strong advantage of software synthesis is the flexibility of a programmed score. Even with a simple
synthesis instrument, control via a score language (discussed later) can be extremely detailed or complicated,
exceeding the range of human performers or the transmission rates of MIDI equipment.

Nonetheless, the disadvantages of non-real-time software synthesis are obvious. Time is wasted waiting for
samples to be computed. Sound is disconnected from real-time human gestureswe cannot shape sound as we
hear it being generated. The stilted quality of some computer music derives from this predicament. The
advantage of programmability becomes a disadvantage when we have to encode simple musical phrases with
the same overhead as more complicated ones. Even a trivial envelope may require us to precalculate and type
in dozens of numbers. Non-real-time software synthesis is "the hard way" to make music.

Fortunately, dramatic speedups in hardware are pushing more and more synthesis methods into the arena of
real-time operation. Commercial synthesizers based on DSP microprocessors circuits allow flexibility in
programming synthesis algorithms. Only the most esoteric and complex methods, like some forms of
parameter estimation and analysis-resynthesis (chapters 7 and 13), remain outside the limits of low-cost
real-time hardware. So today we can choose between real-time and non-real-time synthesis, depending on the
musical application. Besides the time savings, real-time synthesizers have the great advantage that they can be
nlavedanimated bv a musician's gestures as sound is heard.

< previous page page 105 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 105.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 106 Page 1 of 1
< previous page page 106 next paage >
Page 106

Specifying Musical Sounds

Now we turn to the different ways to specify a piece of music to a synthesis system. The traditional way of
making a piece of music is to select various instruments and write a paper score that directs the performers to
play specified musical events, allowing room for interpretation depending on the performers and the
instruments they happen to play. But the possibilities of digital synthesis extend far beyond the ink of traditional
scores.

Sound Objects

In traditional music theory, the note is a static, homogenous, unitary event. Modern synthesis techniques
suggest a generalization of the concept of musical event called a sound object (Schaeffer 1977; Chion and
Reibel 1976; Roads 1985f). The notion of sound object is often useful, since it can encompass sounds that are
longer than one ordinarily considers a note to be, or more complicated. A sound object may contain hundreds
of short subevents (as in vector and granular synthesis). Or it may be controlled by a dozen or more time-
varying parameters, causing it to undergo mutations of identity from one pitch/timbre to another.

The burden of controlling the complicated parameter evolutions for sound object synthesis falls to the
composer. This begs the question: how can we specify all these time-varying quantities? In the next section we
show how much data a common synthesis technique may require. Then the section on the musician's interface
presents five strategies for supplying it.

Example of the Specification Problem for Additive Synthesis

Additive synthesis is a venerable method of sound synthesis. Faithful to its name, it sums the output of several
sine wave oscillators to form a composite sound waveform.

Figure 3.10 presents a digital synthesis instrument for additive synthesis. The instrument includes a frequency
envelope as well as an amplitude envelope for each oscillator. The frequency envelope 1s a time-varying
function with arange [1.0, + 1.0]. This envelope scales the peak deviation value specified as one input to
env_osc. If the peak deviation is 100, for example, and the frequency envelope at its lowest point is 0.1, the
value coming out of the frequency envelope at that point is 10. The adder (+) sums this with the center
frequency of the lower oscillator, causing the frequency to droop from its nominal center point. If the center
freauencv had been

< previous page page 106 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 106.html ~ 5/23/2011

< previous page

Peak deviation Peak daviation

Fraquancy Dupration Frequency Duration
envelope * envealopa +

= BT

10

; 5
Amplitude Duration | Amplitude Duration
envelops envilope

1

Canter 0
frequency

Additive output signal

Figure 3.10
The patch shown in figure 3.7 expanded to form a simplified instrument for additive
synthesis. Each sine oscillator is modified by an amplitude and frequency envelope.
The outputs of many sine oscillators are added together to make one sample. More
three-oscillator units might be added to this patch to make more comnlicated sounds.

next

e >

< previous page page 108

specified as 440 Hz, the frequency envelope would cause it to go down to 430 Hz at some point.

Notice how each vertical slice of this instrument includes two envelope generators and an audio oscillator. We
will call this unit a voice. Only two voices are shown, but the ellipses indicate that other voices are hidden.
Such an instrument can generate an extremely wide range of soundsprovided that we can specify the data.

Now we turn to the problem of specifying the parameters for the instrument in figure 3.10. For each voice and
each event, the instrument requires the following parameters:

1. Center frequency of audio oscillator osc
2. Peak amplitude (set as 1.0 in the figure)
3. Amplitude envelope

4, Begin time of amplitude envelope

5. Duration of amplitude envelope

6. Frequency envelope

7. Begin time of frequency envelope

8. Duration of frequency envelope

If the instrument has fifteen voices, and each voice requires these eight data values, that means 120 data values
must be specified for just one event!

Thus no matter how powerful synthesis hardware becomes, the problem of specifying the control data
remains. In chapter 4 we look in more detail at the data requirements of additive synthesis. The next section
presents six general strategies that apply to all synthesis techniques.

The Musician's Interface

The different ways of supplving synthesis data to a computer and synthesizer fall into six categories:
1. Musical input devices

2. Performance software

3. Editors

4. Score languages

5. Algorithmic composition programs

6. Sound analvsis nrograms

This version of Total HTML Converter is unregistered.

page 109 Page 1 of 1
< previous page page 109 next paage >
Page 109

Figure 3.11 schematizes these categories. The first five categories correspond to the musician's interfaces
explored in part V of this book. The last category is covered in part IV. The next six sections explain briefly
each category.

Musical Input Devices

Musical input devices are the physical instruments manipulated by musicians (see chapter 14). The instrument
directly links the musician's gestures to the production of sound. Electronic input devices decouple the
manipulation of sound from the need to power it physically. Hence they are potentially more flexible than
traditional instruments. For example, with electronic instruments, a single wind controller can create low bass
sounds as easily as high soprano sounds. Indeed, electronic input devices are so easy that one research
direction seeks to reinfuse the physical difficulty, to recreate the sense of effort that leads to expressive
performances.

The benefits of real-time musical input devices are clear, although the technical problems associated with
connecting them to a computer can be formidable. Traditional acoustical instruments developed over hundreds
of years, whereas their digital counterparts have just begun their evolution. Musical input devices are best
suited for fine control of a few musical parameters. For example, the keys on a keyboard can indicate pitch,
while the velocity of key depression determines the amplitude of the higher-frequency oscillators. Most MIDI
keyboards have one or more continuous controllers (such as footpedals, modulation wheels, or joysticks).
These controllers can be assigned to any manipulable parameter, so we might set the foot pedal to control
overall amplitude, and a modulation wheel to bend the shape of the fundamental pitch.

Performance Software

The use of real-time performance software is expanding due to the proliferation of MIDI-based systems (see
chapter 15). Performance software includes such utilities as sequencers that can remember and play back
keyboard performances. Sequencers record pure control data (such as the onset time of key depressions on a
keyboard, signaling the beginnings of notes) rather than samples of audio waveforms. Computer music also
provides the opportunity to go beyond traditional solo performance, for example, to provide control at the
level of a conductor of an ensemble.

Fitted with eyes (a camera or another type of sensor) and ears (microphones and sound analysis software),
comnuter-based instruments can

< previous page page 109 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 109.html 5/23/2011

< previous page page 110 next paae >
Page 110

(a) BT

R LR
devices .

(=) Inpst devica

Performance
soflware

Microphens

[Manus, icong,
and graphical
representations >
- of music Synthesizer,
_— i

(d)
Tes Language
Languages compiler Syrithesizer,
] ele.

(a) Algerithmic
Algarithmic composition
compositian program
pragrams Synthesizeor,
ele,

{f Sound

Sound analysis
“analysis program

Synthesizer,
ate.

Figure 3.11
The musician's interface: six different ways of specifying synthesis
data to a computer or synthesizer. (¢) An input device can transmit
the necessary data directly to a synthesizer, with or without a
computer in between. (b) Performance software interprets the
performer's gestures and may even be able to improvise. (c¢) Editors
let the user build up a specification through interactive graphics
techniques. (d) Languages encode the specification as a precise
text. (e) Algorithmic composition programs typically require a small
amount of initial parameter data from the composer before they
generate music. (f) Sound analysis automatically derives data for
modification and resvnthesis from sounds fed into it.

This version of Total HTML Converter is unregistered.

page 111 Page 1 of 1
< previous page page 111 next page >
Page 111

respond to a human gesture in arbitrarily complex ways, through the use of procedures embedded in the
performance software. It is increasingly common to see concerts in which a synthesizer controlled by a
computer improvises with a human performer. Another application of such a system is a more flexible rendition
of a prepared score, replacing the fixed tape recorder mode of performance.

As a simple example of performance software, one might set up a situation whereby a certain passage played
on a keyboard triggers the start of a prerecorded score section, while a single high C key stops the sequence.
A modulation wheel might determine the tempo of the prerecorded sequence.

Editors

An editor program lets a musician create and change a text, sound, or image (see chapter 16). Many
interactive editors employ graphics techniques to provide an efficient environment for the musician. The
material being edited can be quickly cut, pasted, or changed with simple gestures.

Graphical editors facilitate rapid prototyping of ideas, and hence they are most often found in the individual
studio, where there is time for research. Musical ideas can be built up incrementally in an editor, and often the
musician can hear the result as the change is being made.

Since music exists on many different levels and perspectives, it makes sense that there should be many types of
editors for music. To set up a performance for an additive synthesizer, one uses score, instrument, and function
editors. We enter the parameters for each sound object into a text editor, or manipulate a graphic image (such
as common music notation or piano-roll notation). The instrument editor editor configures the additive
synthesizer from unit generators such as oscillators and envelope generators. At the end of an editing session
we tell the program to write the patch to the synthesizer. A function editor provides several ways of defining
functions of time (waveforms and envelopes), including graphical methods and mathematical formulas. We
apply the function editor to the task of creating the amplitude and frequency envelopes for the various
oscillators.

Languages

Perhaps the most precise method of specifying music involves preparing note lists or play lists that are part of
a score language (see chapter 17). The score language defines a syntax for the parameters of the instrument,
listed in individual narameter fields (abbreviated nfields).

< previous page page 111 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 111.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 112 Page 1 of 1
< previous paae page 112 next paae >
Page 112
; pl P2 P3 p4 p5 po6
; Ins Start Dur. Freqg. (Hz) Amp. (dB) Waveform
il 0 1.0 440 70 3
i2 1.0 .5 660 80 4
Figure 3.12

Numerical score example. Three lines of comments followed by a two-
line score. The first line specifies a note for synthesis
mstrument 1 (i1), while the second specifies a note for 12.

Our first example of a score language was the simple score line in figure 3.8b. Traditionally the first parameter
after the name of the instrument gives the start time, and the second parameter gives the duration for the event.
Subsequent parameters have different meanings, depending on the nature of the instrument. For example, the
first line of the score file shown in figure 3.12 says that the event uses instrument 1, starts at 0, plays for 1.0
seconds, has a frequency of 440 Hz, an amplitude of 70 dB, and uses waveform number 3. (The two bottom
lines in bold are the score; the other lines are comments.)

Score languages also contain function table definitionsthe envelope and waveform definitions used by the
instruments (see chapter 17).

Traditional score languages are basically numeric: instruments, pitches, and amplitudes are expressed as
numbers. Alternative score languages support more "natural” specifications of music, allowing equal-tempered
pitch names, for example. (For a discussion of score languages, see Smith 1973; Schottstaedt 1983, 1989a;
Jaffe 1989; also Loy 1989a and chapter 17.)

The principal advantage of score languages is also their disadvantage: precision and detail. With a language,
musicians are required to enter the score as an alphanumeric text. Not all composers care to specify their
music in such minute detail at all times. In the additive synthesis example given above, the musician would be
required to type 120 values for each sound object. On the other hand, a score language lets the musician
precisely specify a score that is so detailed that it could never be played accurately by a human performer.

Algorithmic Composition Programs

Some of the earliest work in computer music involved algorithmic composition: the creation of a music score
according to a procedure specified by the composer/programmer (Hiller and Isaacson 1959; Xenakis 1971;
Barbaud

< previous page page 112 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 112.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 113 Page 1 of 1
< previous padge page 113 next page >
Page 113

1966; Zaripov 1969). For example, the computer can calculate the parameters of sound according to a
probability distribution or another type of procedure (see chapters 18 and 19).

For example, suppose that we feed a set of initial data to an algorithmic composition program, and then let it
generate a complete score including all parameters needed for additive synthesis. Chapter 19 shows that there
are many possible strategies that an algorithmic composition program might take. Hence it is understandable
that the nature of the initial data varies from program to program. For a program that computes a score on the
basis of probabilities, the composer might specify these general attributes of the score:

1. Number of sections

2. Average duration of sections

3. Minimum and maximum density of notes in a section

4. Grouping of frequency and amplitude envelopes into timbre classes
5. Probability for each instrument in a timbre class to play

6. Longest and shortest duration playable by each instrument

In this case, the control is global and statistical in nature. The composer can determine the overall attributes of
the score, but all the details are calculated by the program. In other programs, the data might be more detailed
and the stylistic constraints more specific.

Sound Analysis

Like music, sound can be dissected in innumerable ways. The established categories of sound analysis target
three aspects: pitch, thythm, and spectrum. We can use the output of these analyzers to drive synthesis, as in a
convolver that maps the rhythm of one sound onto the timbre of another (Roads 1993a; chapter 10), a pitch
detector tracking a human voice that drives the accompaniment pitch of a digital oscillator (chapter 12), or a
spectrum analyzer that extracts the time-varying frequency and amplitude curves for additive resynthesis
(chapter 13).

Conclusion

Developments in physical and electronic acoustics have opened the way for numerous experiments
in musical tone nroduction. Creations in this catecorv renresent the most

< previous page page 113 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 113.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 114 Page 1 of 1
< previous page page 114 next paage >
Page 114

avant-garde developments in music today. The new sounds, added to new rhythmic, harmonic, and
tonal concepts, make the music extremely difficult to evaluate in terms of normal musico-aesthetic
standards.

H. Miller (1960)

The musical potential of digital sound synthesis has begun to be explored, but much remains poorly
understood. For now, digital technology allows precise and repeatable sound generation. With the proper
hardware, software, and audio playback system, we can generate musical signals of very high audio quality.
Perhaps even more important than precision is programmability, which translates into musical flexibility. Given
enough memory and computation time, a computer can realize any synthesis algorithm, no matter how
complicated.

While hardware continues to increase in speed, there is a continuing problem of finding the proper control data
to drive the synthesis engine. One of the challenges of synthesis is how to imagine and convey to the machine
the parameters of the sounds we want to produce. The point of specification is the musician's interface,
discussed in the six chapters comprising part V, and sound analysis, presented in part [V.

Music theory lags a half century behind the actual practice of computer music. Synthesis techniques of leading
composers are exploring the space of possibilities, leaving behind charts of musical sound geography for future
generations to scan. The history of music in times of experimentation like these indicates that the current period
is leading to an era of consolidationwhen much of the experimentation of today will seem mundane, when the
resources that at present seem radical will appear commonplace. Music composition will then enter a new era
of refinement, and questions of orchestration can again be addressed within a systemic framework, as they
were in the age of the svmnhonv orchestra.

< previous page page 114 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 114.html 5/23/2011

< previous page

4
Sampling and Additive Synthesis

Sampling Svnthesis
Musiaue Concrete and Sampling: Backeround
Looping
Pitch Shifting
Sample-rate Conversion Without Pitch Shifting
Problems in Resampling
Data Reduction and Data Compression in Samplers
Data Reduction
Data Compression
Sample Libraries
An Assessment of Samplers
Madeling Note-to-note Transitions
Additive Svnthesis
Additive Svnthesis: Backoround
Fixed-waveform Additive Svnthesis
The Phase Factor
Addition of Partials
Time-varving Additive Svnthesis
DNemands of Additive Svnthesis
Sources of Control Data for Additive Svnthesis
Additive Analvsis/Resvnthesis
Musical Annlications of Additive Analvsis/Resvnthesis
Methods of Sound Analvsis for Additive Svnthesis

Data Rednction in Analveie/Resvnthesis

< previous page page 116

Line-segment Approximation

Principal Components Analysis

Spectral Interpolation Svnthesis

Snectral Modeline Svnthesis
Walsh Function Svnthesis

Conchiion

next page >
Page 116

This version of Total HTML Converter is unregistered.

page 117 Page 1 of 1
< previous paqge page 117 next page >
Page 117

This chapter introduces the method of sound sampling and several forms of additive synthesis. These
techniques are fundamental to computer music and should be understood by every musician interested in
synthesized sound.

Sampling Synthesis

In popular parlance, sampling means making a digital recording of a relatively short sound. The term
"sampling" derives from established notions of digital samples and sampling rate. Sampling instruments, with
or without musical keyboards, are widely available. All sampling instruments are designed around the basic
notion of playing back prerecorded sounds, shifted to the desired pitch.

Sampling synthesis is different from the classical technique of fixed-waveform synthesis explained in chapter 1.
Instead of scanning a small fixed wavetable containing one cycle of a waveform, a sampling system scans a
large wavetable that contains thousands of individual cyclesseveral seconds of prerecorded sound. Since the
sampled waveform changes over the attack, sustain, and decay portion of the event, the result is a rich and
time-varying sound. The length of the sampling wavetable can be arbitrarily long, limited only by the memory
capacity of the sampler. Most samplers provide an interface to an optical or magnetic disk drive so that groups
of samples can be loaded into the sampler relatively quickly.

Musique Concrete and Sampling:
Background

Composed manipulation of recorded sounds dates back at least as early as the 1920s, when composers such
as Darius Milhaud, Paul Hindemith, and Ernst Toch experimented with variable-speed phonographs in concert
(Ernst 1977). Magnetic tape recording, originally developed in Germany in the 1930s, permitted cutting and
splicing, and therefore flexible editing and rearrangement of sequences of recorded sounds. Tape recorders
were not available to musicians until the post World War 2 period.

After experiments with variable-speed phonographs in the late 1940s, Pierre Schaeffer founded the Studio de
Musique Concrete at Paris in 1950 (see figure 4.1). He and Pierre Henry began to use tape recorders to
record and manipulate concrete sounds. Musique concrete refers to the use of microphone-recorded sounds,
rather than synthetically generated tones as in pure electronic music. But it also refers to the manner of working
with

< previous page page 117 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 117.html 5/23/2011

This version of Total HTML Converter is unregistered.

Page 1 of 1
next page >

Page 118

page 118
< previous paqge page 118
il g)
= WU e
LK
Figure 4.1
Pierre Schaeffer's studio for musique concrete at rue de I'Université, Paris, 1960. The
studio features three tape recorders on the left, along with a disk turntable. On the
right is another tape recorder and the multiple-head Phonogéne device
(see figure 4.2).
(Photogranh courtesv of the Groune de Recherches Musicales. Paris.)
< previous page page 118

next page >

C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 118.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 119 Page 1 of 1
< previous page page 119 next paage >
Page 119

Figure 4.2
Pierre Schaeffer with the Phonogene, a tape-based transposer and time-stretcher, 1953,
Paris.
(Photograph by Lido, supplied by the courtesy of the Groupe de Recherches Musicales.)

such sounds. Composers of musique concréte work directly with sound objects (Schaefter 1977; Chion
1982). Their compositions demand new forms of graphic notation, outside the boundaries of traditional scores
for orchestra (Bayle 1993).

Modern sampling instruments are based on a principle used in photoelectric and tape-loop devices such as the
Edwin Welte's Light-tone Organ (Berlin, 1930s), Sammis's Singing Keyboard (Hollywood, 1936), Pierre
Schaeffer's Phonogene (figure 4.2, Paris, early 1950s), Hugh LeCaine's Special Purpose Tape Recorder
(Ottawa, 1955), the Chamberlain (Los Angeles, late 1960s), and the Mellotron (London, early 1970s). These
devices played either optical disks (encoded with photographic images of waveforms), or magnetic tape loops
of sound. Denending on the disk or tane selected and

< previous page page 119 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 119.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 120 Page 1 of 1
< previous page page 120 next page >
Page 120

the key pressed on the musical keyboard, a playback head inside these instruments would play the sound on
the disk or tape running at a rate that matched the pitch specified by the depressed key.

The designer of the Singing Keyboard, Frederick Sammis, described the potential of such an instrument in
1936:

Let us suppose that we are to use this machine as a special-purpose instrument for making
"talkie" cartoons. At once it will be evident that we have a machine with which the composer
may try out various combinations of words and music and learn at once just how they will
sound in the finished work. The instrument will probably have ten or more sound tracks
recorded side by side on a strip of film and featuring such words as "quack" for a duck,
"meow" for a cat, "moo" for a cow. . . . It could as well be the bark of a dog or the hum of a
human voice at the proper pitch.

(Frederick Sammis, quoted in Rhea [1977].)

Perhaps the most famous predigital "sampler" was the Mellotronan expensive instrument containing a number
of rotating tape loops. The Mellotron enjoyed popular success with rock groups in the 1970s. They used the
instrument to create "orchestral" or "choral" backings on popular songs. But the complicated electromechanical
design of the Mellotron made it a temperamental instrument. The tape loops wore out due to head abrasion,
and there were failures in the moving parts used in selecting and running multiple tape loops. Despite their
problems., Mellotrons piqued interest in the prospect of playing recorded natural sounds on stage.

Several years later, the rise of digital electronics made it feasible to record and store sound in digital memory
chips. In the 1970s, however, memory chips were still expensive, so the first "sampling" devices were simple
delay units for the recording studio, designed to enrich a sound by mixing it with a sampled version of itself
delayed by several milliseconds. (See chapter 10 for a discussion of delay effects.) As memory became
cheaper it became possible to store several seconds of sounds for playback on a musical keyboard based
digital sampling instrument. The Fairlight Computer Music Instrument (CMI) was the first commercial
keyboard sampler (1979, Australia). The CMI had a resolution of 8 bits per sample and cost over $25,000.
Taking advantage of declining costs for digital hardware, the E-mu Emulator (figure 4.3), introduced in 1981,
lowered the cost of 8-bit monophonic sampling (Vail 1993). For about $9000, the Emulator offered a total of
128 Kbytes of sample memory.

In order to create a commercial sampling instrument, three basic issues must be addressed: looping, pitch-
shiftine. and data reduction. which we discuss in the next three sections.

< previous page page 120 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 120.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 121 Page 1 of 1
< previous page page 121 next page >
Page 121

Figure 4.3
The E-mu Emulator sampling keyboard instrument (1981).

Looping

Looping extends the duration of sampled sounds played by a musical keyboard. If the musician holds down a
key, the sampler should scan "seamlessly" through the note until the musician releases the key. This is
accomplished by specifying beginning and ending loop points in the sampled sound. After the attack of the
note is finished, the sampler reads repeatedly through the looped part of the wavetable until the key is released;
then it plays the note's final portion of the wavetable.

Factory-supplied samples are often "prelooped." But for newly sampled sounds, the responsibility of specifying
the begin and end loop points is usually left to the musician who sampled them. Creating a seamless but
"natural" loop out of a traditional instrument tone requires care. The loop should begin after the attack of the
note and should end before the decay (figure 4.4).

Some samplers provide automatic methods for finding prospective loop points. One method is to perform
pitch detection on the sampled sound (Massie 1986). (See chapter 12 for a discussion of pitch detection
methods.) The pitch detection algorithm searches for repeating patterns in the wavetable that indicate a
fundamental nitch neriod. The nitch period is the time

< previous page page 121 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 121.html 5/23/2011

< previous page page 122 next paage >

Page 122

Decay Sustain Releass

\ Good looping
range

e

Figure 4.4
Sound with a characteristic ADSR amplitude envelope. The best
area for a smooth loop is the sustained portion.

Fundamental
pitch period

+1

b o

Amp.
-1

Time —=

Figure 4.5
The fundamental pitch period is equal to one cycle of a
periodic waveform, in this case, a waveform emitted by
an alto saxophone.

interval that spans one cycle of a periodic waveform (figure 4.5). Once the pitch has been estimated, the
sampler suggests a pair of loop points that match some number of pitch periods in the waveform. This kind of
looping algorithm tends to generate smooth loops that are constant in pitch. If the body of the loop is too short,
however, the result is similar to the sterile tones of fixed-waveform synthesis. For example, a loop
encompassing one or two pitch periods of a violin note negates the time-varying qualities of a bowed string,
yielding an artificial tone that has lost its identity.

The beginning and ending points of a loop can either be spliced together at a common sample point or
crossfaded. A splice is a cut from one sound to the next. Splicing waveforms results in a click, pop, or thump
at the splice point, unless the beginning and ending points are well matched. Crossfading means that the end
part of each looped event gradually fades out while the beginning part slowly fades in again; the crossfade
looping process repeats

page 122

< previous page page 123 next paae >
Page 123

@)
End of loop Beginning of loop

Splice paoint

A
\/

End of loop

Time ———

Beginning of laop

Figure 4.6
Splicing versus crossfading loops. (a) A
vertical splice of two parts of a waveform at a
common zero point. The ending point of the
loop splices to the beginning of the same
wavetable loop. (b) Crossfade looping can be
viewed as a fade out of the end of the loop
overlapped by a fade in of the beginning of
the loop.

over and over as the note is sustained (figure 4.6). Typical crossfade times range from 1 to 100 ms, but
crossfades can be extended as long as is desired.

When none of these techniques create a smooth loop, due to vibrato or other variations in the signal, more
complicated methods can be brought to bear, such as bidirectional looping. A bidirectional loop alternates
between forwards and backwards playback (figure 4.7a). Forwards and backwards loops can be layered on
top of one another to mask discontinuities in either direction (figure 4.7b). Even more elaborate looping
techniques based on spectrum analysis are available. For example, one can analyze the sound, randomize the
phase of each snectral comnonent in the loon. and resvnthesize (Collins 1993).

page 123

< previous page page 124

(a)

Forwards Backwards Forwards

+

Backwards

Figure 4.7
Looping methods for smoothing out variations. (a)
Three cycles of a bidirectional loop. (b) In a layered
forwards and backwards loop the two versions are
added together.

Pitch-shifting

In an inexpensive sampler it may not be possible to store every note played by an acoustic instrument. These
samplers store only every third or fourth semitone and obtain intermediate notes by shifting the pitch of a
nearby stored note. If you record a sound into a sampler memory and play it back by pressing different keys,
the sampler carries out the same pitch-shifting technique. A side effect of simple pitch shifting is that the sound's
duration increases or decreases, depending on the key pressed. Chapter 10 describes methods of pitch shifting
that preserve the original duration of the sound. Here we stay with simple pitch shifting.

Two methods of simple pitch shifting exist.

Method 1. Varying the clock frequency of the output DAC changes the playback sampling rate; this shifts the
pitch up or down and changes the duration.

Method 2. Sample-rate conversion (resampling the signal in the digital domain) shifts the pitch inside the
sampler and allows playback at a constant sampling rate for all pitches.

Some samplers employ the first method, others use the second method. Both of these methods are called
time-domain techniques, since they operate directly on the time-domain waveform. This is different from the
freauencv-

This version of Total HTML Converter is unregistered.

page 125 Page 1 of 1
< previous page page 125 next page >
Page 125

domain pitch-shifting techniques discussed in chapter 10. Next we compare these two time-domain methods.

Since method 1 changes the playback sampling rate, it requires a separate DAC for each note that can be
played simultaneously on the musical keyboard (typically up to 10 DACs). Each DAC must permit a variable
clock rate and have a variable-frequency smoothing filter associated with it. For full transposibility, the DAC
and the filter must work over extremely wide operating ranges. For example, if a tone with a pitch of 250 Hz
sampled at 44.1 KHz is shifted up six octaves to 16 KHz, the clock frequency of the output DAC must shift
up six octaves to 2.82 MHz.

Because of these ranges, either expensive parts must be used or (more typically) the audio performance of the
system must be compromised in some ways. For example, one sampler that employs this pitch-shifting method
allows only a single semitone of transposition (less than a 6% change of clock frequency) for sounds recorded
at its highest sampling rate of 41.67 KHz. In this case the DAC and the filter are never forced to work at a
sampling rate higher than 44.1 KHz. Other samplers do not permit any transposition above an arbitrary
frequency.

Pitch-shifting method 2 performs sample-rate conversion. Sample-rate conversion, in effect, resamples the
signal in the digital domain. This is essentially the same pitch variation technique as used in wavetable-lookup
synthesis described in chapter 3. The output DAC's sampling frequency remains constant. Speeding up a
sound and increasing its pitch is achieved by resampling at a lower sampling rate. This is analogous to time-
lapse photography in which the frame rate is slowed down to achieve a speedup on playback. In a digital
audio system samples are skipped in resampling. The number of samples that are skipped is proportional to
the amount of pitch shifting that is desired (just as in wavetable-lookup synthesis). The process of skipping
samples in resampling is called decimation (figure 4.8a). Resampling with decimation is also called
downsampling. For example, to shift the pitch upwards by three octaves, the signal is downsampled by
reading every third sample in playback.

To lower the pitch of a sound and slow it down, the sound is resampled at a higher frequency to stretch it out.
This is analogous to the operation of a slow-motion camera that speeds up the frame rate to achieve a
slowdown upon playback. In a digital audio system, new intermediate samples are inserted between existing
samples by means of interpolation (figure 4.8b). Resampling with interpolation is also called upsampling.

The relationship between the various resampling rates and pitch-shifting can be confusing at first, because
pitch-shifting method 1 and method 2 seem to go in opposite directions to achieve the same aim. Method 1
raises

< previous page page 125 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 125.html 5/23/2011

< previous page page 126

Original Cecimatad Pitch-shifted by
by two an actave upwards

yfy

Qriginal Interpatated Fitch-shifted
an octave downwards

Pitch-shifting by sample-rate conversion with a constant playback
sampling frequency. (Top) If every other sample is skipped on playback,
the signal is decimated and the pitch is shifted up an octave. (Bottom) If
twice the number of samples are used by means of interpolation on
playback., the signal is shifted down an octave.

pitch by increasing the sampling rate on playback. Method 2, however, raises pitch by decreasing the
resampling rate with decimation (downsampling), even though the playback sampling frequency is constant.

So far we have seen how to shift pitch by octave intervals. To shift pitch by any integer ratio, a combination of
interpolation and decimation are used (Schafer and Rabiner 1973a; Moorer 1977; Rabiner 1983; Lagadec
1983; Crochiere and Rabiner 1983; Hutchins 1986a; Duncan and Rossum 1988). In particular, to pitch shift
by a ratio N/M, we first interpolate by M and then decimate by N. For example, to shift a sound down by an
interval of 3/4 (a perfect fourth) we upsample and interpolate by a factor of 4 and then downsample and
decimate by a factor of 3. To shift up by a factor of 4/3 we first interpolate by 3 and then decimate by 4.

Sample-rate Conversion Without Pitch-shifting

Many digital audio recorders operate at the standard sampling rates of 48 or 44.1 KHz. How can we
resample a recording at one of these freauencies

This version of Total HTML Converter is unregistered.

page 127 Page 1 of 1
< previous page page 127 next page >
Page 127

so as to play it back at the other frequency with no pitch shift? In this case the resampling rate is the same as
the new output DAC sampling rate.

To convert a signal between the standard sampling rates of 44.1 and 48 KHz without a pitch change, a rather
elaborate conversion process is required. First the rates are factored:

48000 = 2° % 3

TaT00 — 772 = (43 x 47 x 10/7).

These ratios can be implemented as six stages of interpolations and decimations by factors of 2, 3, 5, and 7.
1. Interpolate by 4 from 44,100 to 176,400 Hz

2. Decimate by 3 from 176,400 to 58,800 Hz

3. Interpolate by 4 from 58,800 to 235,200 Hz

4. Decimate by 7 from 235,200 to 33,600 Hz

5. Interpolate by 10 from 33,600 to 336,000 Hz

6. Decimate by 7 from 336,000 to 48,000 Hz

The signal can then be played back at a sampling rate of 48 KHz with no change of pitch.

As long as the input and output sampling rates can be written as a simple fraction, then the conversion process
is straightforward. If the rates do not have an integer ratio or they are constantly changing, then more
sophisticated mathematical techniques must be used, which we will not venture into here (see Crochiere and
Rabiner 1983; Rabiner 1984; Lagadec 1984). This is the case with flanging effects (see chapter 10) and
audio scrubbmg (simulating the manual back-and-forth motion of a magnetic tape rocking across a playback
head to locate a splice point).

Problems in Resampling

The audio fidelity of resampling is limited by the precision of the hardware used in the conversion. When there
are many intermediate resampling stages, a slight loss in fidelity in the form of added noise is to be expected.
Aliasing (see chapter 1) can also be a problem. This is because resampling, like the original sampling process,
can generate unwanted spectral artifacts due to aliasing. When a sampler skips samples in decimation, for
example, it is throwing away intermediate samples. These intermediate samples may have smoothed the
waveform's transition between two disioint noints. Thus

< previous page page 127 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 127.html 5/23/2011

< previous page

Figure 4.9
With enough decimation, even a
sine wave can be turned into a
jagged waveform. (a) Original
sinusoidal waveform.
(b) Decimation of (a) by a factor
of eight.

a decimated signal is often full of jagged discontinuities (figure 4.9). At the same time, all frequencies are shifted
up, meaning that aliasing can occur on playback. This problem can be reduced to a minimal effect by lowpass
filtering the signal after decimation. Filtering smooths the jagged edges of the decimated waveform.

Filtering is also needed in interpolation because simple linear interpolation creates aliased components. Rather
than devising a more complicated interpolation scheme, the usual approach in sample-rate conversion is to
combine linear interpolation with filtering to shift the frequencv content and also minimize aliasing.

Data Reduction and Data Compression in Samplers

The price of semiconductor memory has declined dramatically since it was introduced in the early 1970s. It is
still not practical, however, to store a large library of sounds in semiconductor memory. To fit even a subset of
such a library into their limited memories, many samplers use data reduction or data compression strategies
to reduce the storage burden. The two are quite different. Data reduction throws away what it considers to be
"non-essential" data, while data compression merely makes use of redundancies in the data to code it in a more
memory-efficient form. Data compression can reconstitute the original data, while data reduction involves a
loss of the original data. Both methods are sometimes grouped under the rubric of coding or encoding
schemes in the audio literature.

This version of Total HTML Converter is unregistered.

page 129 Page 1 of 1
< previous paqge page 129 next paae >
Page 129
Data Reduction

Most samplers do not have facilities for sound analysis and "intelligent" data reduction. In order to reduce the
amount of memory needed for storage of audio samples, manufacturers have sometimes taken crude measures
that directly affect audio quality. For example, an obvious way to reduce the data stored in a sampler is to limit
the sample resolution or quantization (see chapter 1). Some inexpensive sample players use 12 bits or fewer to
represent a sample. A variation on this is a floating-point encoding scheme that stores the samples in a low-
resolution form along with several bits that indicate the original amplitude of the sound (Pohlmann 1989a).
Despite shifts in apparent dynamic range, however, the signal-to-noise ratio of the low-resolution samples
remains low. Another method is lowering the sampling rate. This diminishes the number of samples stored per
unit of time, at the cost of shrinking the audio bandwidth. A third way is to store only every third or fourth note
in the range of an instrument and then pitch-shift those samples to play in between pitches. This has the side
effect of shifting the spectrum, which is not ideal. If the sound contains any variation like tremolo or vibrato, the
rate of these variations is also affected noticeably by pitch-shifting. As the cost of memory declines, there is
less and less justification for methods that uniformly compromise audio quality.

A more sophisticated approach to data reduction starts from an analysis stage, which stores sounds in a data-
reduced form along with control functions that approximately reconstitute it. There are many possible
approaches to this analysis and resynthesis. For example, the analysis may take into account masking
phenomena and throw away those parts of a sound that are supposedly masked by louder parts. (For an
introduction to masking, see chapter 23; for further details see Buser and Imbert 1991.) Later in this chapter
we look at four experimental data reduction methods based on an additive synthesis model. Several
commercial data reduction schemes are built into consumer audio products. This is not the place to enter into a
broader discussion of the completeness of the perceptual models on which data reduction schemes are based.
Suffice it to say that in any data reduction scheme there is a loss of data leading to a reduction in audio quality.
These losses are especially apparent in musical material that exploits the full range of a fine audio system.

Data Compression

To conserve memory space, some systems use data compression techniques to limit the amount of space
taken un bv a stream of samnles. This is done

< previous page page 129 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 129.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 130 Page 1 of 1
< previous page page 130 next paage >
Page 130

through the elimination of data redundancies and should not involve any sacrifice in audio quality. One common
compression method is run-length encoding. The basic idea of run-length encoding is that every sample value
is not stored. Rather, each sample that is different from the previous sample is stored, together with a value that

indicates how many subsequent samples repeat that value. (For more on audio data compression see Moorer
1979b.)

Sample Libraries

Since a sampler is a type of recording system, the quality of the samples depends on the quality of the
recording techniques. Making high-quality samples requires good players with fine instruments, excellent
microphones, and favorable recording environments. Arranging all these elements for a large library of sounds
takes a great deal of effort. Thus most users of samplers prefer to supplement their collection of samples with
libraries prepared by professionals and distributed on magnetic or optical disks.

An Assessment of Samplers

Despite advances in sampling technology, samplers retain a "mechanistic" sound quality that makes them
distinguishable from the animated sounds produced by good human performers. Most percussionists, for
example, would not mistake the frozen sound of a sampled drum solo from that of a human drummer. In a live
performance on acoustic drums, each drum stroke is unique, and there are major differences in the sound
depending on the musical context in which the stroke is played. This is not to say that robotic performance is
invalid. The commercial success of drum machines proves that lock-step rthythms and unvarying percussion
sounds have a major audience.

In any case, it is understandable that the "naturalness" or "realism" of a sampler should be held up as a criterion
for judging between different brands. It is well known that a given instrument tone may sound much more
realistic on one sampler than it does on another.

Certain instruments, like organs, can be modeled more or less realistically by most samplers. That is, they all
can generate a high-quality recording of a pipe or electronic organ. Other instruments like voices, violins,
saxophones, electric guitars, and sitars are intrinsically more difficult to capture with existing sampling
technology. Individual notes can be captured reasonably well, but when we put the notes together into phrases,
melodies, and chords, it is apparent that major chunks of acoustic and performance information have been left
out.

< previous page page 130 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 130.html ~ 5/23/2011

This version of Total HTML Converter is unregistered.

page 131 Page 1 of 1
< previous page page 131 next page >
Page 131

Factory-supplied samples model the generic singer, the generic saxophone played by the generic saxophonist,
the generic orchestra played in the generic concert hall, and so on. Yet most knowledgeable listeners can tell
the difference between two vocalists, saxophonists, and conductors with orchestras. It would be difficult to
mistake a MIDI sequencer/sampler rendition of a saxophone solo for the signature style of the John Coltrane
original. This points out a fundamental limitation in existing samplers. Beyond a certain point, it is impossible to
increase the realism of present samplers without major advances in technology and in understanding of the
relationship between sound structure and musical performance. One obvious evolutionary path for samplers is
analysis/resynthesis (see chapter 13), which permits flexible, context-sensitive transformations of musical
sounds.

In expressive instruments like voices, saxophones, sitars, guitars, and others, each note is created in a musical
context. Within a phrase, a note is reached from another note (or from silence) and leads into the successive
note (or leads to silence). In addition to these contextual cues, transitional sounds like breathing, tonguing, key
clicks, and sliding fingers along strings punctuate the phrasing. Constraints of style and taste determine when
context-sensitive effects such as rubato, portamento, vibrato, crescendi and diminuendi, and other nuances are
applied.

These problems can be broken into two parts: (1) How can we model the sound microstructure of note-to-
note transitions? (2) How can we interpret (analyze) scores to render a context-sensitive performance
according to style-specific rules? These questions are the subiject of the next two brief sections.

Modeling Note-to-note Transitions

The problem of what happens in note-to-note transitions was the subject of the doctoral research of John
Strawn at Stanford University (1985b). He analyzed the transitions in nine nonpercussive orchestral
instruments. The time- and frequency-domain plots that emerged from this research graphically depicted the
context-sensitive nature of tone successions.

In wind instruments, one of the ways to articulate a transition is by fonguinga momentary interruption of the
windstream by an action of the tongue, as if the player were pronouncing the letter 7 or . Figure 4.10 shows a
time-domain plot of transitions of a trumpet played tongued (a) and untongued (b). The contrast between the
two types of transitions is clear.

Figure 4.11 plots the spectrum of this transition. Strawn's research demonstrated that some transitions are very
smooth. with a dio of as little as

< previous page page 131 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 131.html ~ 5/23/2011

< previous page page 132

Figure 4.10
Time-domain plot of note-to-note transition of an ascending
major third interval for a trumpet played tongued («) and
untongued (b). The time span for the plots is about 120 ms.
(Courtesy of John Strawn.)

10 dB of amplitude between notes. Other transitions are laden with strong transitional cues in amplitude and
spectrum changes that articulate the attack of the second note.

Modeling the microstructure of note-to-note transitions appears to be a tractable problem, since its solution
depends on an expectable advance in technology. The problem could be solved by an increase in sampler
memory capacities (storing all two-note transitions), fast signal processing, or some combination of the two.
The diphone method, for example, stores transition data in a form that allows them to be stretched or
compressed (Rodet, Depalle, and Poirot 1988). Holloway and Haken (1992) model transitions as overlapping
tracks in a tracking phase vocoder (see chapter 13).

If transitions are to be calculated automaticallyas a musician plays on a keyboard, for example, the instrument
must be able to make a very quick determination of context. (Chapter 15 discusses the related issue of
machine internretation of musical scores.)

< previous page next page >

Page 133

(a)

Lo 7]
harmonics |

High
harmenics

()

Lows]
harmonics

Spectrum plots of the transitions shown in figure 4.10. The plots
show 50 harmonics plotted over a time span of 300 ms, with lower
harmonics at the back. (a) Tongued. (b) Untongued. Notice how the
"hole" in the middle of (@) is filled in when the note transition is
untongued (more continuous).

(Courtesv of John Strawn.)

This version of Total HTML Converter is unregistered.

page 134 Page 1 of 1
< previous paqge page 134 next page >
Page 134
Additive Synthesis

Additive synthesis 1s a class of sound synthesis techniques based on the summation of elementary waveforms
to create a more complex waveform. Additive synthesis is one of the oldest and most heavily researched
synthesis techniques. This section starts with a brief history of additive synthesis and explains its fixed-
waveform and time-varying manifestations. The next section is devoted to the process of
analysis/resynthesislinking an analysis of a sound to a resynthesis stage based on additive synthesis.

Additive Synthesis:
Background

The concept of additive synthesis is centuries old, first being applied in pipe organs by means of their multiple
register-stops. By pulling on a register-stop, air could be routed to a set of pipes. The air was actually
released into the pipecreating soundby pressing a key on the organ keyboard. By pulling several register-stops
in various proportions one could add together the sound of several pipes for each key pressed on the organ
musical keyboard. According to one scholar, "The Middle Ages particularly favored the 'mixtures' in which
every note was accompanied by several fifths and octaves based upon it" (Geiringer 1945). This idea of
frequency "mixtures" is the essence of additive synthesis.

Additive synthesis has been used since the earliest days of electrical and electronic music (Cahill 1897;
Douglas 1968; die Reihe 1955; Stockhausen 1964). The massive Telharmonium synthesizer unveiled in 1906
summed the sound of dozens of electrical tone generators to create additive tone complexes (figure 4.12).

Incorporating a miniature version of the Telharmonium's rotating tone generators, the famous Hammond organs
were pure additive synthesis instruments (figure 4.13). The power of additive synthesis derives from the fact
that it is theoretically possible to closely approximate any complex waveform as a sum of elementary
waveforms. Methods exist for analyzing a sound such as a violin tone and resynthesizing it using time-varying
combinations of sine waves of various frequencies, phases, and amplitudes. Due to intrinsic limitations in the
resolution of the analysis, however, this reconstructed version is never a sample-for-sample replication of the
original signal (see chapter 13).

Any method that adds several elementary waveforms to create a new one could be classified as a form of
additive synthesis. For example, some forms of granular synthesis discussed in chapter 5 could be called
additive svnthe-

< previous page page 134 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 134.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 135

< previous page

page 135

Page 1 of 1
next page >

g afe
@8&&&. = %

Fpariaad | 10U pad
o TEpari tﬂft"

' x_f%mc

ALY

B, £ B i

] —

< previous page
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 135.html

£

e:.'t;-';-.r.a-a; eADL :"
i i

)

5,
parals

Figure 4.12
Additive synthesis of a complex tone in the Telharmonium. Sine wave harmonics from the tone-generating alterna
fed to bus bars (54). Pressing a key (C in this case) connects each harmonic to a multicoil transformer (56 "inductc
where they mix. Each harmonic is attentuated to the desired level by the inductors in series with each winding (5
etc.). The tap-switch inductors (60) regulate the amplitude of the mixing transformer output, as do the inductors n
loudspeakers (72, 73) at the listener's end of the transmission line.
(Cahill natent drawing. renroduced in Johnson et al. 1970.)

page 135

oW

P IT I Frct parbiait

kil
5°} parfials E%

3
-l
a-rgm.rnd‘fm; &

next page >
5/23/2011

This version of Total HTML Converter is unregistered.

page 136 Page 1 of 1
< previous page page 136 next page >
Page 136

Figure 4.13
Hammond B3 organ, an additive synthesis instrument based on
electromechanical tone-wheels. Different mixtures of the various
harmonics can be adjusted by pulling "drawbars" above the musical
keys.
(Photograph courtesy of the Institute of Organology, Kunitachi
College of Music, Tokyo.)

sis techniques (Risset and Wessel 1982). However, we have separated these techniques from additive
synthesis in this chapter in order to clarify the distinctions between the classical method of sine wave additive
synthesis and those methods.

Fixed-waveform Additive Synthesis

Some software packages and synthesizers let the musician create waveforms by harmonic addition. In order
to make a waveform with a given spectrum the user adjusts the relative strengths of a set of harmonics of a
given fundamental. (The term "harmonic" as an integer multiple of a fundamental frequency was first used by
Sauveur [1653 1716] in 1701.) For example, 400 Hz is the second harmonic of 200 Hz, since 2 times 200
equals 400. The harmonics can be displayed as a bar graph or histogram, with the height of each bar
representing the relative strength of a given harmonic. Figure 4.14 shows a harmonic spectrum and the
corresponding waveform.

< previous page page 136 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 136.html 5/23/2011

< previous page page 137 next paae >
Page 137

Harmaniz 1

Harmonic 3

Harmonie 5

i |I,I”|JJHII LEALIT p b
1 21] S0

Harmonics —=

I

1

‘rw-—r———ﬁ—mmq‘

Tirme —=

Figure 4.14
Waveform synthesis by harmonic addition. (a)
Histogram showing the relative strength of the
harmonics on a linear scale. In this case, the
histogram has energy only in the odd harmonics.
The amplitude of the third harmonic is one-third
that of the fundamental, the amplitude of the fifth
harmonic is one- fifth that of the fundamental, and
so on. (b) Approximation to a square wave
synthesized by harmonic addition using the
histogram in (a).

Once a desirable spectrum is tuned, the software calculates a waveform that reproduces the spectrum when it
is played by a digital oscillator. This spectrum template aligns to different frequencies when one changes the
pitch of the oscillator. Figure 4.15 shows successive stages of waveform addition used to create a quasi-
square wave.

The Phase Factor

Phase is a trickster. Depending on the context, it may or may not be a significant factor in additive synthesis.
For example, if one changes the starting phases of the frequency components of a fixed waveform and
resvnthesizes the tone. this makes no difference to the listener. And vet such a

< previous page next paage >

Page 138

Figure 4.15
Stages of harmonic addition as seen in a series
of time-domain waveforms. (a) Fundamental only.
(b) First and third harmonics. (¢) Sum of odd
harmonics through the fifth. (d) Sum of odd
harmonics through the ninth. (e) Quasi- square
wave created by summing odd harmonics up to
the 101st.

page 138

This version of Total HTML Converter is unregistered.

page 139 Page 1 of 1
< previous page page 139 next page >
Page 139
.J\f’/\"-f E
| |
i | A
L AVAVA
Timg —
Figure 4.16

Effect of phase in additive synthesis. This
waveform is the result of the same mixture of
sine waves as in figure 4.15e except that the
starting phase of the fifth harmonic is 90
degrees instead of 0 degrees.

change may have a significant effect on the visual appearance of the waveform, as shown in figure 4.16.

Phase relationships become apparent in the perception of the brilliant but short life of attacks, grains, and
transients. The ear is also sensitive to phase relationships in complex sounds where the phases of certain
components are shifting over time. As we see later in the section on sound analysis and resynthesis, proper
phase data help reassemble short-lived components in their correct order, and are therefore essential in
reconstructing an analyzed sound.

Addition of Partials

We can generalize from addition of harmonics to addition of partials. In acoustics, a partial refers to an
arbitrary frequency component in a spectrum (Benade 1990). The partial may or may not be a harmonic
(integer multiple) of a fundamental frequency f. Figure 4.17a shows a spectrum containing four partials: two
harmonic and two inharmonic. An inharmonic partial is not in an integer ratio to the fundamental frequency.
Figure 4.17b is the waveform that results from the sum of the four partials.

Addition of partials is limited in that it succeeds only in creating a more interesting fixed-waveform sound.
Since the spectrum in fixed-waveform synthesis is constant over the course of a note, partial addition can never
reproduce accurately the sound of an acoustic instrument. It approximates only the steady-state portion of an
instrumental tone. Research has shown that the atfack portion of a tone, where the frequency mixture is
changing on a millisecond-by-millisecond timescale, is by more useful for identifying traditional instrument tones
than the steady-state portion. In any case, a time-varying timbre is usually more tantalizing to the ear than a
constant snectrum (Grev 1975).

< previous page page 139 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 139.html ~ 5/23/2011

< previous page page 140 next paage >
Page 140

(&) 200 Hz (fundamental)

347.5 Hz (inharmaonic) 0921.8 Hz
Amp. 2000 Hz (harmmaonic) {inharmonic)
|]

i
Fregquency —

Figure 4.17
Partial addition with four components. The percentage
contribution of each component is 73, 18, 5, and 4 percent,
respectively. (a) Frequency-domain view. (b) Time-domain
waveform.

Time-varying Additive Synthesis

By changing the mixture of sine waves over time, one obtains more interesting synthetic timbres and more
realistic instrumental tones. In the trumpet note in figure 4.18, it takes twelve sine waves to reproduce the initial
attack portion of the event. After 300 ms, only three or four sine waves are needed.

We can view the process of partial addition graphically in several ways. Figure 4.19a shows additive synthesis
in the analog domain, as it was practiced in the 1950s (Stockhausen 1964). The figure shows several oscillator
hardware modules, each with a manually controlled frequency knob. The outputs of the oscillators are routed
to a mixer. The composer adjusted the balance of the oscillators in real time to determine the time-varying
spectrum. With this setup, manual control was the only option. To precisely realize a time-varying mixture took
several people working together (Morawska-Biingler 1988).

Figure 4.19b shows digital additive synthesis. An audio oscillator is represented as a quasi half-circle with a
pair of innutsone for amolitude and

< previous page page 141

Tirne (seconds)

Figure 4.18
Time-varying spectrum plot of twelve partials of a trumpet tone, with the
highest partials in the foreground. Time goes from left to right. Notice that
the fundamental (at the back) is not the highest amplitude, but it lasts the
longest.

one for frequency. To generate a time-varying spectrum, each frequency and amplitude input to the oscillators
is not a constant but a time-varying envelope function read over the duration of the event. The sine wave audio
oscillators feed into a module that sums the signals. The sum module then passes the additive result to a DAC
for conversion to sound.

Demands of Additive Synthesis

Time-varying additive synthesis makes heavy demands on a digital music system. First, it requires large
numbers of oscillators. If we make the musically reasonable assumptions that each sound event in a piece may
have up to 24 partials (each generated by a separate sine wave oscillator), and that up to sixteen events can be
playing simultaneously, we need up to 384 oscillators at any given time. If the system is running at a sampling
rate of 48 KHz, it must be capable of generating 48,000 x 384 or 18,432,000 samples/second. Since each
sample requires about 768 operations (multiply-adds), the total computational load is over 1.4 billion
onerations ner second. without counting table-lookun onerations. Table 20.1 in chaoter 20

next page >

< previous page page 142

Bank of analag escillators

sine waves

To amplifier and loudspaakear

Bankof |
sing wave
oscillators |

Summing
unit

Figure 4.19
Two views of additive synthesis. (a) In the analog domain,
oscillators feed a mixer. (b) Digital additive synthesis. Time-
varying additive synthesis with separate frequency (F) and
amplitude (A) envelopes. Figure 3.10 shows a more detailed
instrument diagram for additive svnthesis.

This version of Total HTML Converter is unregistered.

page 143 Page 1 of 1
< previous page page 143 next page >
Page 143

estimates the per-sample requirements for additive synthesis. Such computational demands, although
formidable, are not outside the limits of current hardware. For example, one synthesizer specialized for additive
synthesis offers the potential of several thousand sine waves in real time (Jansen 1991).

Yet computational power is only one requirement of additive synthesis. The method also has a voracious
appetite for control data. If a piece contains 10,000 events (such as a typical orchestral score), each with up to
24 partials, one needs to have 240,000 frequency envelopes and 240,000 amplitude envelopes on hand. Even
if the same envelope is used in more than one event, where do the control data come from? This is the subject
of the next section.

Sources of Control Data for Additive Synthesis

Effective use of any digital synthesis techniqueincluding additive synthesisdepends on having good control data
for the synthesis instrument. To create animated sounds with a rich internal development, one drives the
synthesizer with control data; hence, the control data are also referred to as the driving functions of the
synthesis instrument. Control data can be obtained from several sources:

1. Imported from another domain and mapped into the range of synthesis parameters. For example, some
composers have traced the shape of mountains or urban skylines and used these curves as control functions.
This is the approach used in the early computer music piece Earth's Magnetic Field (1970) by Charles
Dodge and in pieces derived purely from geometric, stochastic. or other mathematical or physical models.

2. Generated by a composition program that embodies composer-specified constraints on musical
microstructure. An example 1s John Chowning's Stria (1977), realized with additive synthesis of inharmonic
spectra.

3. Generated by an interactive composition system that translates high-level musical concepts such as phrases
(in the Formes language of Rodet and Cointe 1984), tendency masks (as in the POD system of Truax 1977,
1985), sound objects (as in the SSSP system of Buxton et al. 1978), or clouds (as in asynchronous granular
synthesis of Roads 1978c, 1991) into synthesis parameters.

4. Entered manually by the composer, using combinations of the previously mentioned sources or the
composer's intuitive, theoretical, or empirical knowledge of psychoacoustics. An example of this method is
Jean-Claude Risset's niece Inharmoniaue (1970).

< previous page page 143 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 143.html 5/23/2011

< previous page page 144 next paae >

Page 144

5. Supplied from an analysis subsystem that mulches a natural sound and spews out the control data needed to
resynthesize it. The data can also be edited in order to create transformations of the original sounds. Trevor
Wishart (1988) used sound analysis as an intermediate stage in transforming vocal sounds for his piece Vox-5
(see also Murail 1991).

Since methods 1 to 4 are based on compositional aesthetics, we do not discuss them further in this chapter.
The fifth method requires a subsystem for sound analysis; this is the subject of the next section.

Additive Analysis/Resynthesis

Analysis/resynthesis encompasses different techniques that have a three-step process in common (figure 4.20):
1. A recorded sound is analyzed

2. The musician modifies the analysis data

3. The modified data are used in resynthesizing the altered sound

The concept of analysis/resynthesis is not predicated solely on additive synthesis. It can also be based on
subtractive resynthesis (see chapter 5),

Criginal sound

Digital audio samples

Analysis

| Analysis data
r

calion

Meodified analysis data
'

Resynthesis

Cigitel audio sampies

Transformad sound

Figure 4.20
General overview of analysis/ resynthesis.
The modification stage may involve
manual edits to the analysis data or
modifications via cross-synthesis where
the analysis data of one sound scale the
analvsis data from another sound.

page 144

< previous page page 145 next page >
Page 145

combinations of additive and subtractive resynthesis (Serra 1989; Serra and Smith 1990), or other methods
(see chapter 13).

Early experiments in additive analysis/resynthesis were carried out by H. Fletcher (of the famous Fletcher-
Munson loudness curves) and his associates (Fletcher, Blackham, and Stratton 1962; Fletcher, Blackham, and
Christensen 1963). They used entirely analog equipment. When digital additive methods are used for
resynthesis, the entire system looks like figure 4.21. The analysis is carried out successively on short segments
of the input signal. The process of segmenting the input signal is called windowing (discussed in chapter 13
and appendix A). We can think of each windowed segment as being sent through a bank of narrow bandpass
filters, where every filter is tuned to a specific center frequency. In practice, a fast Fourier

Windowed AT
input signal

Bank of [

narrow | [

bandpass |
filters | RS S

F

sine wave | \ o/
ascillators | e

Replica of
input signal

Figure 4.21
Additive analysis/synthesis. A windowed input signal is
analyzed by a filter bank into a set of frequency (F) and
amplitude (A) envelopes or control functions that drive a
set of oscillators. If the analysis data are not changed, the
outout signal should be almost the same as the inout signal.

page 145

This version of Total HTML Converter is unregistered.

page 146 Page 1 of 1
< previous page page 146 next page >
Page 146

transform (FFT) usually replaces the filter bank and performs essentially the same task in this application, that
1S, measuring the energy in each frequency band (again, see chapter 13 and appendix A).

The amplitude of the signal coming out of each filter is measured, and this time-varying value becomes the
amplitude control function for that frequency range. At the same time, the system calculates control functions
corresponding to small frequency deviations by looking at the output of adjacent filters (or analysis bins, in the
case of the FFT).

The frequency and amplitude control functions drive a bank of oscillators in the resynthesis stage. In other
words, we are using the information gleaned from the analysis of an existing sound to create the set of control
functions needed to resynthesize that sound additively with sine waves. If the input sound is well modeled as a
sum of sine waves, the summed signal generated by the oscillators should be much the same as the original
mput signal.

Of course, straightforward analysis/resynthesis of a sound is not interesting from a musical standpoint. In order
to create musically interesting effects, we must modify the data generated by the analysis. This is the subject of
the next section.

Musical Applications of Additive Analysis/Resynthesis

After the analysis has been performed, musicians can edit the control functions to create variations of the
original input signal. Many different effects are possible with this technique, as listed in table 4.1. Three
compositions produced in the 1980s stand as good examples of compositional manipulation of analysis data:
Mortuos Plango, Vivos Voco (1981) by Jonathan Harvey, Désintegrations (1983, Salabert Trajectoires) by
Tristan Murail. and Digital Moonscapes (1985, CBS/Sony) by Wendy Carlos.

In the Harvey piece, the composer analyzed the sound of a large bell. For each sinusoidal component in the
resynthesis, the composer substituted the sound of a sampled boy's voice at the appropriate frequency. The
voice samples followed the analyzed frequency and amplitude control functions of the chiming bells, creating an
eerie effect of a boy/bell chorus. In the composition by Murail, the composer analyzed traditional instrument
tones and created synthetic complements to these tones that blend seamlessly with the sounding instruments yet
weave out dramatically when the instruments stop. Désintegrations is a classic example of spectral
composition techniques where the harmonic structure of the work is based on an analysis of instrumental tones
(Murail 1991). In Digital Moonscapes, Carlos used analysis data as the inspiration for creating an ad hoc
svnthetic orchestra of ner-

< previous page page 146 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 146.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 147 Page 1 of 1
< previous paae page 147 next paae >
Page 147
Table 4.1 Musical transformations using additive analysis/resynthesis
Musical effect Technique
Variations of recorded Change selected frequency or amplitude envelopes by editing or
sounds multiplications by arbitrary functions.
Spectrum scaling Multiply the frequency of all the partials (possibly excepting the

(without time scaling) fundamental) by a factor # or by arbitrary functions. Since
multiplication does not preserve formant structures, vocal and
instrumental sounds may lose their characteristic identity.

Spectrum shifting Add a factor n or an arbitrary function to all partials (possibly

(without time scaling) excepting the fundamental). For small values this preserves formant
structures.

Spectrum inversion Reversing the order of the frequency components before resynthesis,

so that the amplitude of the first partial is assigned to the last partial,
and vice versa, followed by exchange of the amplitudes of the second
and next-to-last components, etc.

Hybrid timbres Replace some envelopes from one sound with selected envelopes from
another sound.

Time expansion and Extend the duration of the frequency and amplitude envelopes, or

compression without change the sop size on playback (see chapter 13).

pitch shifting

Stretch a percussive Delay the onset time of each partial and smooth their envelopes.

timbre into a prolonged

synthetic passage

Timbral interpolation Interpolate over time between the envelopes of two instrument tones.

from one instrumental

tone to another

Mutating synthetic Interpolate between the envelopes of arbitrary synthetic sounds.

sounds

Enhance the resonance Increase the amplitude of selected frequency partials.

regions of recorded

sounds

Cross-synthesis Method 1: Use the amplitude envelopes for the partials of one sound to
scale the amplitude envelopes of another sound (see fast convolution
in chapter 10).
Method 2: Apply the amplitude envelopes from one sound to the
frequency (or phase) functions of another sound.
Method 3: Apply the noise residual from one sound to the quasi-
harmonic part of another sound (see, for example, the description of
spectral modeling synthesis and the comb wavelet transform in chapter
13).

< previous page page 147 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 147.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 148 Page 1 of 1
< previous paqge page 148 next page >
Page 148

cussion-, string-, woodwind-, and brasslike timbres, used in an idiomatic orchestral style.

The next section briefly discusses current techniques of sound analysis with additive resynthesis with an
emphasis on the data reduction problem. It serves as a prelude to the more detailed treatment in chapter 13
and appendix A.

Methods of Sound Analysis for Additive Synthesis

Many spectrum analysis methods, including pitch-synchronous analysis (Risset and Mathews 1969), the
phase vocoder (Dolson 1983, 1986, 1989b), and constant-Q analysis (Petersen 1980; Schwede 1983;
Stautner 1983), among others, are variations on the basic technique of Fourier analysis of component
frequencies. The practical form of Fourier analysis is the short-time Fourier transform (STFT). This method
can be thought of as analyzing a sampled sound by extracting successive short-duration overlapping segments
(shaped by a window function) and applying a bank of filters to the selected segment. The output of each filter
is measured, indicating the amplitude and the phase of the spectrum at that particular frequency. A series of
these short-time analyses (akin to the frames of a film) constitute a time-varying spectrum. At the core of the
STFT is the FFT, a computationally efficient implementation of Fourier analysis (Cooley and Tukey 1965;
Singleton 1967: Moore 1978a. 1978b: Rabiner and Gold 1975).

The phase vocoder (PV) (Flanagan and Golden 1966; Portnoff 1978; Holtzman 1980; Moorer 1978; Dolson
1983; Gordon and Strawn 1985; Strawn 1985b) deserves special mention here, as it is a popular method of
sound analysis/resynthesis that has been distributed with several music software packages. The PV converts a
sampled input signal into a time-varying spectral format. In particular, it generates a set of time-varying
frequency and amplitude curves. Many interesting sound transformations can be achieved by editing and
resynthesizing PV data. For example, the phase vocoder can be used for time compression or time
expansion without pitch change. In this effect a sound is made longer or shorter without significantly affecting
its pitch or timbre. (See chapter 10 for a discussion of various approaches to time compression/expansion.)

Contrary to the expectations of the researchers who invented them (who were searching for efficient coding
techniques), sound analysis techniques may generate an "information explosion" (Risset and Wessel 1982).
That is, the analysis data (the control functions) can take up many times more memory space than the original
input signal. The amount of data depends partly on the complexity of the input sound, that is, how many sine
wave

< previous page page 148 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 148.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 149 Page 1 of 1
< previous paqge page 149 next page >
Page 149

functions are needed to resynthesize it, and partly on the internal data representation used in the analysis
program. Using the tracking phase vocoder, for example, a short sound file that takes up 2 Mbytes may
generate tens of Mbytes of analysis data. Such storage requirements make it difficult to build libraries of
analyzed sounds, and the volume of data becomes onerous to edit. This situation mandates some form of data
reduction of the control data, the subject of the next section.

Data Reduction in Analysis/Resynthesis

Data reduction is important to efficient analysis/resynthesis. Data reduction takes two steps. First, the dataa set
of amplitude and frequency control functionsare analyzed. Second, an algorithm transforms the original data
into a more compact representation. An important goal of data reduction is to compact data without eliminating
perceptually salient features of the input signal. Another important goal in computer music work is that the
analysis data must be left in a form that can be edited by a composer. The goal is not simply to save bits;
rather, one wants to make it easy to manipulate the data-reduced material (Moorer 1977).

A large body of research work on data reduction of digital audio samples is recorded in the literature, including
studies by Risset (1966), Freedman (1967), Beauchamp (1969, 1975), Grey (1975), Grey and Gordon
(1978), Charbonneau (1981), Strawn (1980, 1985a, 1985b), Stautner (1983), Kleczkowski (1989), Serra
(1989), Serra and Smith (1990), Holloway and Haken (1992), and Horner, Beauchamp, and Haken (1993).
Since real-time work is so important to musicians, one goal of analysis/resynthesis research is to speed up data
reduction processing and facilitate real-time synthesis from reduced data. Papers by Sasaki and Smith (1980)
and Schindler (1984) explain hardware designs for high-speed digital synthesis from reduced data.

Many volumes of engineering literature explore data reduction methods. Here we glance at four techniques that
have been applied in computer music: line-segment approximation, principal components analysis, spectral
interpolation synthesis, and spectral modeling synthesis. (See also Goldberg 1989 for a description of the
genetic algorithm approach, which has recently been applied to synthesis data reduction [Horner, Beauchamp,
and Haken 19931.)

Line-segment Approximation

Line-segment approximation of the amplitude and frequency control functions eliminates the need to store a
distinct value for everv samnle analvzed.

< previous page page 149 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 149.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 150 Page 1 of 1
< previous page page 150 next paage >
Page 150

Instead, the analysis system stores only a set of breakpoint pairs, which are time (x-axis) and amplitude (-
axis) points where the waveform changes significantly. Line-segment approximation represents the overall
outline of a waveform by storing only the points of maximum inflection (change). In the resynthesis stage the
system "connects the dots," usually by means of straight lines interpolated between the breakpoint pairs.

Initial work with line-segment approximation was done by hand, using an interactive graphics editor to
construct functions with four to eight segments each (Grey 1975). A data reduction of a hundredfold was
achieved. This manual editing work can also be partially automated, as demonstrated by Strawn (1985a,
1985b). Figure 4.22a shows a perspective plot of the sixteen harmonics of a violin tone, sampled at 25 KHz.
Figure 4.22b plots an approximation to (a) using just three line segments.

Going beyond the storage of line-segment approximations, Beauchamp (1975) developed a heuristic technique
for inferring the approximate amplitude curve of all harmonics of a tone from the curve of the first harmonic.
For simple periodic tones, Charbonneau (1981) found that even more radical data reduction could be
achieved. He used simple variations of a single envelope for all amplitude functions of a given tone. (See also
Kleczkowski 1989 and Eaglestone and Oates 1990 for refinements of these proposals.)

Princinal Components Analysis

The technique of principle components analysis (PCA) has been applied in several analysis/resynthesis
systems (Stautner 1983; Sandell and Martens 1992; Horner, Beauchamp, and Hakken 1993). PCA breaks
down a waveform using the mathematical technique of covariance matrix calculation. This results in a set of
basic waveforms (the principal components) and a set of weighting coefficients for these basic waveforms.
When the components are summed according to their weights, the result is a close approximation of the
original waveform.

The advantage of PCA is its potential for data reduction. PCA analysis summarizes the underlying relationships
between samples so the fewest number of components account for the maximum possible variance in the
signal. The process of determining the principal components and their weighting coefficients is implemented as
an iterative approximation that tries to minimize the squared numerical error (difference between the original
and the approximation). The first principal component is a fit of a single waveform to the entire data set. The
second principal component is a fit to the residual (sometimes called residue), or difference between the
original and first annroximation. The third comnonent is a fit to the residual of the

< previous page page 150 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 150.html 5/23/2011

< previous page page 151 next paae >
Page 151

Figure 4.22
Drastic data reduction of analysis data for additive
synthesis. Amplitude is plotted vertically, frequency
goes from back to front, and time goes left to right. (a)
Original frequency-vrs-time-vrs-amplitude curve of a
violin tone. (b) The same violin tone as in (@),
approximated with only three line segments per partial.

second component, and so on. For further details on PCA see Glaser and Ruchkin (1976).

Spectral Interpolation Synthesis

Spectral interpolation synthesis (SIS) (Serra, Rubine, and Dannenberg 1990) is an experimental technique
that generates time-varying sounds by interpolating between analyzed spectra. Rather than crossfading
between sampled sounds in the time domain (as in multiple wavetable synthesis discussed in chapter 5), SIS
starts from analvses of recorded sounds and

This version of Total HTML Converter is unregistered.

page 152 Page 1 of 1
< previous paqge page 152 next page >
Page 152

uses additive synthesis to crossfade between the analyses of successive spectra in the frequency domain. An
automatic data reduction algorithm is necessary to compress the analysis data into a small set of common
spectral paths between two successive sounds and a set of ramp functions that describe the transition from one
spectrum to the next. The main difficulty with the procedure appears to be its handling of the attack portion of
sounds.

Spectral Modeling Synthesis

Spectral modeling synthesis (SMS) (Serra 1989; Serra and Smith 1990) reduces the analysis data into a
deterministic component (narrowband components of the original sound) and a stochastic component. The
deterministic component is a data-reduced version of the analysis that models the most prominent frequencies
in the spectrum. These frequencies are isolated by a process of peak detection in each frame of the analysis,
and peak continuation, which tracks each peak across successive frames. SMS resynthesizes these tracked
frequencies with sine waves. This is the same method as used in tracking phase vocoders described in chapter
13.

SMS goes beyond this representation, however, by also analyzing the residual or the difference between the
deterministic component and the original signal. This is the called the "stochastic" component of the signal. The
stochastic component takes the form of a series of envelopes that control a bank of frequency-shaping filters
through which white noise is being passed. Thus a composer can transform the deterministic (sine) envelopes
and the stochastic (filtered noise) components separately, if desired (figure 4.23). Noisy components remain
noisy, even after transformations (such as filtering) are applied to them. This stands in contrast with a pure sine
wave model, in which transformations (such as time compression/expansion) on noisy components often turn
them into orderlv sine wave clusters, denaturing their noisy texture.

Efficient algorithms for generation of pseudorandom noise are well known (Knuth 1973a; Keele 1973;
Rabiner and Gold 1975). Thus the use of filtered noise results in a tremendous data reduction. In purely
sinusoidal resynthesis without this kind of data reduction, noisy components must be approximated with
hundreds of sine waves. The control functions for these sine waves take up a great deal of storage space, and
the sine wave resynthesis is costly from a computational standpoint.

A problem of accuracy left open by SMS s that the filtered pseudorandom noise it uses to reconstruct the
stochastlc component is not necessarily the same quality of noise as the original source. In many sounds,
"noise" is the result of comnlicated turbulences that have an audible char-

< previous page page 152 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 152.html 5/23/2011

< previous page next paage >
Page 153

Input signal

| Analysis I

Deterministic Stochastic
part ‘ part

3
| Transformation i Transformation |

L) i
Sine Filtered

rasynthesis noise

rasynthesis

Output =ignal

Figure 4.23
Overview of spectrum modeling synthesis. The input
signal is divided into a deterministic part and a
stochastic part. Each part can be modified separately
before resynthesis.
(See figure 13.16 for a more detailed view of the
analysis stage.)

acter and identity. For some sounds, the approximation by uniform noise leaves room for improvement.
Walsh Function Synthesis

So far we have discussed analysis/resynthesis as a process based mainly on Fourier analysis with resynthesis
based on sine wave summation. The Fourier sine wave approach has a long tradition of research and
application stemming from the original theorem that states that for periodic signals, a combination of sine waves
of various frequencies can be created that approximate arbitrarily closely the original signal. Mathematical
research has shown that other groups of waveforms besides sine waves can be used to approximate signals. A
family of square waves called the Walsh functions can be used to approximate a signal after it has been
analyzed by means of the Walsh-Hadamard transform. Walsh functions, being rectangular waves, are a kind
of "digital domain series," since they take on only two values + 1 and 1 (Walsh 1923).

Figure 4.24 presents the first eight Walsh functions. Just as with the Fourier series and its sine waves, an
arbitrary periodic waveform can be approximated as an additive sum of a finite series of Walsh functions.

< previous page

Figure 4.24
The first eight Walsh functions. 0 (top) to 7 (bottom).

the Fourier series builds up waveforms out of component frequencies, Walsh synthesis builds up waveforms
using functions of different sequencies. Sequency is defined as one-half the average number of zero crossings
per second (zps) (Hutchins 1973). Figure 4.25 shows a composite waveform derived by summing several
Walsh functions. It suggests how sine wave additive synthesis and Walsh function synthesis are conceptual
opposites. That is, the hardest waveform to synthesize in Walsh function synthesis is a pure sine wave. The
Walsh approximation to a sine will stay jagged until a very high number of sequency terms are used. Any
jaggedness gives an "unsinusoidal" and generally objectionable quality. By contrast, in sine wave synthesis, the
hardest waveform to synthesize is one with a rectangular corner, such as a square wave! Figure 4.15, for
example, depicts a quasi-square wave constructed by summing 101 sine waves.

The main advantage of Walsh functions in digital sound synthesis is their rectangular shape, a shape that can be
comnuted at high sneed bv inexnensive digital circuits. A disadvantage of Walsh function svnthesis as against

< previous page next paage >

Page 155
i)
JJJ_L‘
H f
o

]

=

UL

LU nr

Figure 4.25
Demonstration of Walsh
function summation. (a) A simple
sine wave approximation built
by adding the Walsh functions
shown in (b).

(After Tempelaars 1977.)

sine wave synthesis is that individual Walsh functions are not associated with specific harmonics, as they are in
sine wave additive synthesis. It is, however, possible to pass mathematically from the Fourier (frequency)
domain to the Walsh domain (Tadokoro and Higishi 1978). Thus, one can specify a sound in terms of the
addition of various frequency components (partials), and then transform this specification into a set of
parameter values for a Walsh function synthesizer. Moreover, natural sounds can be sampled and transformed
into the Walsh domain using the Walsh-Hadamard transform and resynthesized using the fast Walsh transform
(FWT) (Hutchins 1973, 1975).

A number of music synthesis operations have been redesigned for Walsh signal processing circuits. For
example, Hutchins (1973) designed an envelope generator using Walsh function circuits. Rozenberg (1979)
and Hutchins (1975) showed how to realize amplitude modulation, subtractive synthesis, frequency
modulation, frequency shifting, and reverberationall in the Walsh domain.

Despite the potential of Walsh function synthesis, only a few experimental devices based on this technique have
been built (Hutchins 1973. 1975: Insam 1974). None are commerciallv available. This is probablv due to the

next page >

This version of Total HTML Converter is unregistered.

page 156 Page 1 of 1
< previous page page 156 next page >
Page 156

fact that the cost of circuits for sine wave additive synthesis has continued to decline (including memory chips
and multipliers), so the economic advantage of Walsh function circuits has diminished. The weight of
accumulated research in Fourier/sine wave methods and the more intuitive relationship between frequencies
and perception have also contributed to the popularity of sine wave summation in contemporary synthesizer
designs.

Conclusion

This chapter has discussed two widely used synthesis techniques: sampling and additive synthesis. The sampler
is the mockingbird of musical instruments. Its creative synthesis capabilities may be weak, but it can copy any
source through its ability to memorize and playback sound. Because it can also mimic the rich sounds of
acoustic instruments, a sampler is among the most popular electronic instruments available.

Additive techniques have been studied in detail for decades. When coupled to an analysis stage, additive
synthesis is a powerful means of simulating natural sounds and cloning variations of them. As we have seen, the
main drawback of additive techniques is that they achieve a quasi generality by sacrificing computational
efficiency. In order to simulate a given sound, a thorough analysis must be performed. This analysis can
generate an explosion of data that must go through a data reduction stage before it becomes editable. Sound
analysis tools require serious computing power, so in the past they were available only on expensive
institutional-grade computing hardware. This situation is changing, with sophisticated sound analysis and editing
tools available on even portable computers.

The next chapter discusses two synthesis techniques with links to sampling and additive synthesis, namely
multiple wavetable synthesis and granular synthesis. The other technique discussed in chapter 5 is subtractive
svnthesis. the concentual onnosite of additive svnthesis.

< previous page page 156 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 156.html 5/23/2011

< previous page page 157

5
Multiple Wavetable, Wave Terrain, Granular, and Subtractive Synthesis

Multinle Wavetable Svnthesis
Wavetable Crossfading
Wavestacking
Wave Terrain Svnthesis
Terrains and Orbits
Generating Predictable Waveforms from Wave Terrains
Periodic Orbits
Time-varying Orbits
Granular Synthesis
Granular Synthesis: Background
Sonic Grains
Grain Generator Instrument
High-level Granular Oreanizations
Fourier/Wavelet Grids and Screens
Pitch Svnchronous Granular Svnthesis
QOuasi-svnchronous Granular Svnthesis
Asvnchronous Granular Svnthesis
Time Granulation of Samnled Sound
Assessment of Granular Svnthesis
Subtractive Svnthesis
Introduction to Filters

Filter Tvnes and Resnonse Chirves

< previous page page 158

Filter O and Gain
Filter Banks and Equalizers
Comb and Allpass Filters
Time-varving Subtractive Svnthesis
Subtractive Analvsis/Svnthesis
The Vocoder
Linear Predictive Coding
What Is Linear Prediction?
LPC Analysis
Filter Estimation
Pitch and Amnlitude Analvsis
Voiced/U Invoiced Decision
Analvsis Frames
1.PC: Svnthesis
FEditing I.PC. Frame Data
Musical Extensions of Standard [LPC
Assessment of LPC
Dinhone Analvsis/Resvnthesis

Conchision

This version of Total HTML Converter is unregistered.

page 159 Page 1 of 1
< previous page page 159 next paage >
Page 159

This chapter encompasses a broad range of synthesis techniques, beginning with the multiple wavetable
methods employed in commercial samplers and synthesizers. This is followed by an explanation of wave
terrain synthesis and the family of granular synthesis methods. The rest of the chapter deals with
subtractive synthesis, a powerful class of techniques that use filters to shape sound signals.

Multiple Wavetable Synthesis

By multiple wavetable synthesis, we refer to two simple yet sonically effective methods: wavetable
crossfading and wavestacking. These are not the only synthesis methods that can use multiple wavetables;
indeed most methods can be configured to do so. We distinguish the techniques discussed here by the fact that
they are dependent on the existence of multiple wavetables. Both are common in commercial samplers and
sample players.

Horner, Beauchamp, and Hakken (1993) have developed another technique they call "multiple wavetable
synthesis." It is perhaps best classified as a variant of additive analysis/resynthesis (presented in chapter 4). But
it also can be viewed as an instance of the wavestacking method presented here, where the wavetables are
sums of sinusoids derived from an analysis and data reduction stage.

Wavetable Crossfading

As chapter 1 explains, in fixed-waveform synthesis, a digital oscillator scans repeatedly through a wavetable
that has been previously filled with a single waveform. This creates a static timbre, since the waveform repeats
without variance over time. By contrast, wavetable crossfading is direct way to generate time-varying timbres.
Instead of scanning a single wavetable repeatedly, the oscillator crossfades between two or more wavetables
over the course of an event. That is, the event begins with waveform 1, and as 1 begins to fade away,
waveform 2 fades in, and so on. Figure 5.1 portrays the crossfading process. Wavetable crossfading is the
core of what has been called variously compound synthesis (Roads 1985f), vector synthesis (by the
Sequential Circuits, Korg, and Yamaha companies), and L/4 or Linear Arithmetic synthesis (Roland).

Wavetable crossfading creates sounds that mutate from one source to another over time. For example, a
common crossfading technique is to graft the rich attack of an acoustic instrument such as a guitar, piano, or
nNErcus-

< previous page page 159 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 159.html ~ 5/23/2011

< previous page page 160

Timespan of each waveform

N

1 142 2 23 3 A 4

Waveform combinations

Figure 5.1
Wavetable crossfading. The bold outline traces
the amplitude of a note event. Four waveforms
crossfade over the span of the event. The
numbers at the bottom indicate the sequence
of waveforms alone and in combination. Each
region indicated at the bottom represents a
separate timbre; thus the event crossfades
through seven timbres.

sion instrument onto the sustain part of a synthetic waveform. Figure 5.2 depicts an instrument for wavetable
crossfading.

The first commercial synthesizer to implement wavetable crossfading was the Sequential Circuits Incorporated
Prophet VS, introduced in 1985 (figure 5.3), which could crossfade between four waveforms. Newer
synthesizers let users specify an arbitrary number of waveforms to crossfade during a single event (figure 5.4).
The crossfading can be automatic (triggered by a note event) or it can be manually controlled by a rotating a
joystick, as in the vector synthesis implementations designed by David Smith and manufactured in Korg and
Yamaha synthesizers.

Wavestacking

Wavetable stacking or wavestacking is a simple and effective variation on additive synthesis. In this method,
each sound event results from the addition of several waveforms (typically four to eight on commercial
synthesizers). This is done in a different way than in classical additive synthesis. Classical additive synthesis
sums sine waves, whereas in wavestacking each waveform can be a complicated signal, such as a sampled
sound (fieure 5.5).

next page >

This version of Total HTML Converter is unregistered.
page 161 Page 1 of 1
< previous page page 161 next page >

Page 161

| Peaak amplituda

I Cwerall

| amplitude
envelope

[iy —

Waveform 1

1/duration

Envelope 1

e

Wavefarm 2 Envalopa 2

jl B /\01 :

Waveform 3 Envelape 3

5 A

.'| =
Wavelorm 4 Envelope 4

+1 - |
3 L 0 |

ouT

P

Figure 5.2
Wavetable crossfading (vector synthesis) instrument using
four wavetables. Each envelope on the right applies to a
wavetable on the left.

_ Prophet V5

T

T

Figure 5.3
Pronhet VS digital svnthesizer made bv Seauential Circuits Incornorated (1985).

< previous page page 161 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 161.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 162
< previous paae

page 162

Page 1 of 1
next paage >

Page 162

SnEEEng e k] il g T OonE ERERnnocP aEnRonn: B sEnEonsn Il BEosanaiEnnas
Sonar GamalaTR HH Loop
Spectrumd GamelaTR WhiteMoise
GamelaTR HDuleiTR Sonar

GamelaTR Spectruml

HHEE B RRHTEY SRR

5 B amininin [maan e i

MuteGtrs
SheNDrum HoseHit2 Soft M4
Woodblock Jar H
Pluck2 MuteGtr1

il

5 &
Square Pulse08
PulseD2 Pulsel10
Pulse04 Fulsel 2
Fulsel& Pulseld

Sine Sine Sine Sine Sine Sine Sine
Sine Sine Sine Sine Sine Sine
Sine Sine Sine Sine Sine Sine

Sing Sine Sine Sine Sing Sine

Figure 5.4

Patch editor screen image for vector synthesis instrument, showing the wavetable
sequences for four voices. Notice that voice 4 fades through 24 wavetables. Although
each is labeled "sine," these sines may be at different amplitudes and contain a

different number of cycles, causing momentary variations.

By layering several sampled sounds, one can create hybrid timbres like saxophone/flutes or violin/clarinets.
Each waveform in the stack has its own amplitude envelope, so sounds fade in and out of the stack of the
course of a sound event. When four to eight complex waveforms can be stacked, deep and rich hybrid
textures can be created for each sound event.

Wavestacking is implemented by storing a library of waveforms and using table-lookup oscillators to scan
them. Each waveform's envelope must be scaled by a factor of 1/n, where n is equal to the number of stacked
waveforms, to avoid numerical overflow. (That is, the sum of all the waveforms should be within the
auantization ranee of the svnthesizer.) Wavestackine has been imnlemented on manv commercial svnthesizers.

< previous page

page 162

next page >

C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 162.html 5/23/2011

< previous page

Dutput signal

Figure 5.5
Wavetable stacking. The signals from four oscillators added together. Notice that
the wavetables contain not simple periodic functions but long sampled sounds.

Sometimes it is combined with multiple wavetable crossfading to create sounds with turgid internal motion and
spectral development.

Wave Terrain Synthesis

Many synthesis techniques start from the fundamental principle of wavetable lookup as explained in chapter 1:
a wavetable is scanned by means of an index that is incremented at each sample period. It is possible to extend
the principle of wavetable lookup to the scanning of three-dimensional "wave surfaces." We call such a surface
a wave terrain (WT), after R. Gold's use of the term (Bischoff, Gold, and Horton 1978). Several computer
music researchers. including Gold in consultation with Leonard Cottrell (Bischoff.

This version of Total HTML Converter is unregistered.

page 164 Page 1 of 1
< previous paqge page 164 next page >
Page 164

Gold, and Horton 1978), Mitsuhashi (1982c), and Borgonovo and Haus (1984, 1986), have explored the
possibilities of techniques that scan a wave terrain using two indexes. (The article by Borgonovo and Haus
1986 contains code listings for realizing the technique.)

Terrains and Orbits

A traditional wavetable can be plotted in two dimensions as a function wave(x) indexed by x. A two-index
wave terrain can be plotted as a function wave(x, y) etched on a three-dimensional surface (figure 5.6). In this
case, the z-point or height of the surface at each point represents a waveform value for a given pair (x, y). The
waveform stored in such a table is a function of two variables, and thus the technique has also been called
two-variable function synthesis (Borgonono and Haus 1986).

A scan over the terrain is called an orbit. Although the astronomical term "orbit" connotes an elliptical function,
the orbit can consist of any sequence of points on the wave terrain. We discuss orbits more in a moment; first
we confront the problem of generating predictable waveforms with WT synthesis.

Generating Predictable Waveforms from Wave Terrains

For musical purposes, any three-dimensional surface can serve as a wave terrainfrom a tightly-constrained
mathematical function to an arbitrary topographical projection, such as a relief map of a geophysical region. It
is not surprising, however, that systematic investigations of the technique have focused on wave terrains
generated by relatively simple mathematical functions. As in techniques like frequency modulation and
waveshaping (chapter 6), the advantage of using simple mathematical functions is that it is possible to predict
exactly the output waveform and spectrum generated by a given wave terrain. Mitsuhashi (1982¢) and
Borgonovo and Haus (1986) devised smooth mathematical wave terrain functions intherange[1 x 1, 1
v 11. The following conditions must be met in order to predict the output waveform:

1. Both the x and y functions and their first-order partial derivatives are continuous (in the mathematical sense)
over the terrain.

2. Both the x and y functions are zero on the boundaries of the terrain.

The second property ensures that the functions and their derivatives are continuous when the orbit skips from
one edee of the wave terrain to

< previous page page 164 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 164.html 5/23/2011

< previous page next paage >
Page 165

Figure 5.6
The waveform terrain is a three-
dimensional surface. The height
(z-axis) of the terrain represents the waveform value.

another edge. Such a skip is analogous to the right-to-left wraparound that occurs in one-index wavetable
scanning.

The wave terrain depicted in figure 5.6 satisfies the above conditions and is defined by the following equation:

wave(x,p) =(x —p) x (x =1} x (x + D x (y = 1} x (y + 1). (1)

We will see how this function generates various waveforms depending on the scanning orbit. See Mitshuhashi
(1982c) and Borgonovo and Haus (1986) for definitions of similar functions.

Periodic Orbits

The output signal generated by WT depends on both the wave terrain and the trajectory of the orbit. The orbit
can be a straight or curved line across the surface, a random walk, a sinusoidal function, or an elliptical function
generated by sinusoidal terms in both the x and y dimensions. If the orbit repeats itself (i.e., is periodic), so will
the output signal. The top of figure 5.7 shows a periodic elliptical orbit defined by the functions

x=05x%xsin(8 t+ /5)
y=sin(8 7).

The bottom of figure 5.7 displays the periodic waveform that results from using the elliptical orbit on the wave
terrain of equation 1.

< previous page page 166 next paage >

Page 166

Figure 5.7
Elliptical orbit and resulting signal. (top) Plot of the
orbit. Both the x and y dimensions vary from 1 to
+ 1.

(After Borgonovo and Haus 1986.)
(bottom) Waveform generated by the elliptical
orbit over the wave terrain defined in equation 1.
(Note: This waveform is an approximation
redrawn from Borgonovo and Haus 1986.)

Figure 5.8 shows an example of another periodic orbit that loops around the terrain, defined by the functions
x =0.23 x sin(24 ¢)

y=(16 x) +0.46 xsin(24 ¢+ /2).

Time-varying Orbits

When the orbit is fixed, the resulting sound is a fixed waveform characterized by a static spectrum. A way to
generate time-varying waveforms is to change the orbit over time (figure 5.9). Orbits in the form of spirals, for
example, have been shown to produce interesting results.

One can also imagine an extension where the orbit is fixed but the wave terrain is time-varying. In this case the
wave-scanning process is equivalent to tracing the curves of an undulating surface, like wave motions on the
surface of the sea.

WT synthesis has proven itself as an efficient experimental technique for generating synthetic sounds. However,
in order to approximate familiar sounds like speech or the timbres of acoustic musical instruments, more
research is needed to tune the narameters of the techniaue.

page 166

< previous page page 167

Figure 5.8
Looping orbit and resulting signal. (top) Plot of the
orbit. Both the x and y dimensions vary from 1 to
+ 1.
(After Borgonovo and Haus 1986.)
(bottom) Waveform generated by the elliptical orbit

over the wave terrain defined in equation 1.

(Note: This waveform is an approximation redrawn
from Borgonovo and Haus 1986.)

Figure 5.9
Aperiodic orbit and resulting signal.
(top) Plot of orbit trajectories in eight
passes through the wave terrain.
(bottom) Notice the time- varying
waveform.
(After Mitsuhashi 1982c.)

This version of Total HTML Converter is unregistered.

page 168 Page 1 of 1
< previous paqge page 168 next page >
Page 168
Granular Synthesis

Just as light energy can be viewed both in terms of wavelike properties and in terms of particulate properties
(photons), so can sound. Granular synthesis builds up acoustic events from thousands of sound grains. A
sound grain lasts a brief moment (typically 1 to 100 ms), which approaches the minimum perceivable event
time for duration, frequency, and amplitude discrimination.

Granular representations are a useful way of viewing complex sound phenomenaas constellations of elementary
units of energy, with each unit bounded in time and frequency. Such representations are common inside
synthesis and signal-processing algorithms, although there are many different terms for similar phenomena. The
"quantum" (Gabor 1946, 1947), "Gaussian elementary signal" (Helstrom 1966; Bastiaans 1980), "short-time
segment" (Schroeder and Atal 1962), "short-time weighting function" (Flanagan 1972), "window" (Arfib 1991;
Harris 1978; Nuttall 1981), "sliding window" (Bastiaans 1985), "window function pulse" (Bass and Goeddel
1981), "wavelet" (Kronland-Martinet and Grossmann 1991), "formant-wave-function" or "FOF" (Rodet
1980), "VOSIM pulse" (Kaegi and Tempelaars 1978), "wave packet" (Crawford 1968), "toneburst" (Blauert
1983; Pierce 1990), "tone pulse" (Whitfield 1978), and even the "tone pip" (Buser and Imbert 1992) can all
be described as granular representations of musical signals.

The grain is an apt representation for sound because it combines time-domain information (starting time,
duration, envelope shape, waveform shape) with frequency-domain information (the period of the waveform
inside the grain, spectrum of the waveform). This stands in opposition to representations at the sample level
that do not capture frequency-domain information, and abstract Fourier methods that presume that sounds are
summations of infinitely long sinusoids.

Granular Synthesis:
Background

Atomistic views of sound as "particles" can be traced to the origins of the scientific revolution. The Dutch
scholar Isaac Beekman (1588 1637) proposed in 1616 a "corpuscular" theory of sound (Beekman

1604 1634; Cohen 1984). Beekman believed that any vibrating object, like a string, cuts the surrounding air
into spherical corpuscules of air that are projected in all directions by the vibration. When these corpuscles
imninge on the eardrum. Beekman theorized. we nerceive sound. While this theorv is not strictlv true

< previous page page 168 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 168.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 169 Page 1 of 1
< previous page page 169 next paage >
Page 169

in a scientific sense, it paints a colorful metaphor for the perception of granular synthesis.

Centuries later, the notion of a granular or quantum approach to sound was proposed by the British physicist
Dennis Gabor in a pair of brilliant papers that combined theoretical insights from quantum physics with
practical experiments (1946, 1947). According to Gabor's theory, a granular representation could describe
any sound. This hypothesis was verified mathematically by Bastiaans (1980, 1985). In the 1940s Gabor
actually constructed a sound granulator based on a sprocketed optical recording system adapted from a film
projector. He used this to make experiments in time compression/expansion with pitch shiftingchanging the
pitch of a sound without changing its duration, and vice versa. (See chapter 10 for a discussion of time
compression and expansion with pitch-shifting.)

A granular representation is implicit in the windowing technique applied in the short-time Fourier transform,
developed in the 1960s (Schroeder and Atal 1962; see chapter 13 and appendix A). The MIT cybernetician
Norbert Wiener (1964) and the information theorist Abraham Moles (1968) also proposed granular
representations for sound.

The composer lannis Xenakis (1960) was the first to explicate a compositional theory for grains of sound. He
began by adopting the following lemma: "All sound, even continuous musical variation, is conceived as an
assemblage of a large number of elementary sounds adequately disposed in time. In the attack, body, and
decline of a complex sound, thousands of pure sounds appear in a more or less short interval of time ¢."
Xenakis created granular sounds using analog tone generators and tape splicing. These appear in the
composition Analogique A-B for string orchestra and tape (1959). The composition is described in Xenakis
(1992). (The score and tape are available from Editions Salabert.)

The author of this book developed the first computer-based implementations of granular synthesis in 1974 at
the University of California, San Diego (Roads 1978c) and in 1981 at the Massachusetts Institute of
Technology (Roads 1985g). The technique appears in several compositions, including nscor (1980, Wergo
compact disc 2010-50), Field (1981, MIT Media Laboratory compact disc), and Clang-tint (Roads
1993b). Granular synthesis has been implemented in different ways, notably by the Canadian composer Barry
Truax (1987, 1988, 1990a, b), as we discuss in more detail later.

Sonic Grains

An amplitude envelope shapes each grain. This envelope can vary in different implementations from a Gaussian
bell-shaned curve to a simnle

< previous page page 169 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 169.html 5/23/2011

< previous page page 170 next paae >
Page 170

|

Figure 5.10
Grain envelopes. (@) Gaussian. (b) Quasi-
Gaussian. (c) Three-stage linear. (d) Pulse.
(e) Narrow impulse; this could be seen as
equivalent to (a), but over a narrower
timescale.

three-stage line-segment attack/sustain/decay (figure 5.10). The following equation defines a Gaussian curve
P(x):

Plx)= : . g~ x—m¥20?
7.2

where is the standard deviation (spread of the bell) and u is the mean or center peak.

Figure 5.10b shows a quasi-Gaussian curve or Tukey window (Harris 1978), where the peak is extended
over 30 to 50 percent of the duration of the grain. This shape has proved sonically effective (Roads 1985g).

Complicated envelopes like a band-limited pulse (figure 5.10d) create resonant grains that sound like
woodblock taps in sparse textures when the grain duration is less than 100 ms. Narrow envelopes like figure
5.10e create crackling and popping textures when the total grain duration is less than 20 ms. As one would
expect, sharp angles in the envelope cause strong side effects in the spectrum. These side effects are due to the
convolution of the envelope's spectrum with that of the grain waveform. (See chapter 10 for an explanation of
convolution.)

next page >

This version of Total HTML Converter is unregistered.

page 171 Page 1 of 1
< previous paqge page 171 next page >
Page 171

The grain duration can be constant, random, or it can vary in a frequency-dependent way. This means, for
example, that we can assign shorter durations to high-frequency grains. A correspondence between grain
frequency and grain duration is characteristic of the wavelet analysis/resynthesis, discussed later in this chapter
and in chapter 13.

The waveform within the grain can be of two types: synthetic or sampled. Synthetic waveforms are typically
sums of sinusoids scanned at a specified frequency. For sampled grains, one typically reads the waveform from
a stipulated location in a stored sound file, with or without pitch-shifting.

Several parameters can be varied on a grain-by-grain basis, including the duration, envelope, frequency,
location in sound file (for sampled grains), spatial location, and waveform (a wavetable for synthetic grains, or
a file name or input channel for sampled grains). It is this grain-by-grain level of control that leads to the unique
effects made possible by this method.

Grain Generator Instrument

Granular synthesis can be implemented with a simple synthesis instrument: a sine wave oscillator controlled by
an envelope generator (figure 5.11). One could easily extend this instrument to allow a choice between several
wavetable functions.

Despite the simplicity of the instrument, to generate even a plain, uncomplicated sound requires a massive
amount of control dataup to thousands of parameters per second of sound. These parameters describe each
grain: starting time, amplitude, etc. Since one does not want to have to specify each grain's parameters
manually, a higher-level unit of organization is necessary. This unit of organization should automatically generate
the thousands of individual grain specifications.

High-level Granular Organizations

The complexity of the sound generated by granular synthesis derives from the amount of control data fed to it.
If n 1s the number of parameters for each grain, and d is the average grain density per second of sound, it takes
d x n parameter values to specify one second. Since d typically varies between a few dozen and several
thousand, it is clear that for the purposes of compositional control, a higher-level unit of organization for the
grains is needed. The purpose of such a unit is to let composers stipulate large quantities of grains using just a
few global parameters.

Existing eranular svnthesis methods can be classified into five tvnes. accordine to the organization of the grains:

< previous page page 171 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 171.html 5/23/2011

< previous page next page >
Page 172

Amplitude

: 1iduration
Grain envelope |

5 ENV
", QsC
b
F

i reguency
Grain waveform

+1 —

i

Spatial pozition

Figure 5.11
A simple granular synthesis instrument built
from an envelope generator and an oscillator
with multichannel output.

1. Fourier and wavelet grids

2. Pitch-synchronous overlapping streams
3. Quasi-synchronous streams

4. Asynchronous clouds

5. Time-granulated or sampled-sound streams, with overlapped, quasi-synchronous, or asynchronous
playback

In the next sections we examine briefly each approach.
Fourier/Wavelet Grids and Screens

Two related spectrum analysis techniques, the short-time Fourier transform (STFT) and the wavelet
transform, take in a time-domain sound signal and measure its frequency content versus time. (Chapter 13
presents both techniques.) In effect, these methods associate each point in the analysis grid with a unit of time-
frequency energya grain or wavelet (figure 5.12).

The STFT is well known and can be computed using the fast Fourier transform (Rabiner and Gold 1975). The
"orain" in this case is a set of

Dage 172

This version of Total HTML Converter is unregistered.

page 173 Page 1 of 1
< previous padge page 173 next paae >
Page 173

Fraaq.

Timg ——~

Figure 5.12
Fourier grid dividing the time domain and the
frequency domain into bounded units. Each
row represents a frequency channel, and each
column indicates a period of time. The darkness
in each square indicates the intensity in that
time-frequency region. This example shows a
sound that ascends in frequency and grows
more intense. In the STFT the frequency grid
is linear; in the wavelet transform it is typically
logarithmic.

overlapping analysis windows within each of the N channels of the Fourier analyzer (the horizontal rows of
figure 5.12). We can view the grains as if they were aligned on a two-dimensional time/frequency grid, where
the intervals between the grid are equal. Arfib (1991) describes applications of the STFT in terms of granular
operations.

The wavelet transform (Kronland-Martinet and Grossmann 1991) performs a similar operation, but the
spacing of the analysis channels and the duration of the window (called the analyzing wavelet) is different
from the STFT. In the STFT, the spacing between the channels on the frequency axis is linear, while in the
wavelet transform it is logarithmic. That is, in the wavelet transform, the channel frequency interval (bandwidth)

fIf'is constant. Also, in the STFT, the window duration is fixed, while in the wavelet transform it varies as a
function of frequency. (See chapter 13 for more on wavelets.)

Both techniques permit analysis, transformation, and resynthesis, which make them potentially powerful musical
tools for the manipulation of sampled sounds. The most obvious transformations using Fourier/wavelet grids
involve stretching or shrinking the grid to effect time compression and expansion with pitch-shifting, that is,
shifting pitch while keeping the duration the same, or vice versa.

Another grid-oriented conception, but not related to Fourier or wavelet analysis, is Xenakis's (1960, 1992)
concent of screens. A screen is an

< previous page page 173 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 173.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 174 Page 1 of 1
< previous page page 174 next page >
Page 174

amplitude-frequency grid on which grains are scattered. A synchronous sequence of screens (called a book)
constitutes the evolution of a complex sound. Rather than starting from an analyzed sound, as in
Fourier/wavelet grids, proposals for screen-based synthesis use generative algorithms to fill the screen with
grains. Xenakis (1971, 1992) proposed scattering grains randomly into screens, then constructing new screens
from set-theory operationsintersections, unions, complements, differences, among other operations:

Using all sorts of manipulations with these grain clusters, we can hope to produce not only the
sounds of classical instruments and elastic bodies, and those sounds preferred in concrete music,
but also sonic perturbations with evolutions unparalleled and unimaginable until now.

Another screen-oriented proposal suggested that grain parameters could be derived from the interaction of
cellular automata (Bowcott 1989).

Pitch Synchronous Granular Synthesis

Pitch synchronous granular synthesis (PSGS) is a technique designed for the generation of tones with one
or more formant regions in their spectra (De Poli and Piccialli 1991). PSGS is a multistaged operation
involving pitch detection, spectrum analysis and resynthesis, and impulse response-based filtering, technical
processes that are described in later chapters; thus the description here is brief. (See De Poli and Piccialli
1991 for details.)

The first stage of the analysis is pitch detection (see chapter 12). Each pitch period is treated as a separate
unit or grain. Spectrum analysis is performed on each grain. The system derives the impulse response of the
spectrum and uses it to set the parameters for a resynthesis filter. (Chapter 10 discusses impulse response
measurements.)

Hop siza

Time

Figure 5.13
Stream of overlapped grains.
The hop size is the delay
between successive erains.

< previous page page 174 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 174.html ~ 5/23/2011

This version of Total HTML Converter is unregistered.

page 175 Page 1 of 1
< previous page page 175 next paage >
Page 175

In resynthesis, a pulse train at the detected pitch period drives a bank of finite impulse response (FIR) filters.
(FIR filters are discussed in chapter 10.) The output signal results from the excitation of the pulse train on the
weighted sum of the impulse responses of all the filters. At each time frame, the system emits a grain that is
overlapped and added with the previous grain to create a smoothly varying signal (figure 5.13). The
implementation of PSGS by De Poli and Piccialli features several transformations that can create variations of
the original sound. Later extensions allow separation of the quasi-harmonic part of the sound from the residual
inharmonic part (Piccialli et al. 1992).

Quasi-synchronous Granular Synthesis

Quasi-synchronous granular synthesis (QSGS) generates one or more streams of grains, one grain
following another, with a variable delay period between the grains. The stream concept has the advantage of
being straight-forward and intuitive. Orton, Hunt, and Kirk (1991) developed a graphical interface for drawing
stream trajectories as curved lines on a display screen.

Figure 5.14 shows a stream of five grains, each with a quasi-Gaussian envelope and a variable delay before
the next grain. We say "quasi-synchronous" because the grains follow each other at more-or-less equal
intervals. When the interval between successive grains is equal, the overall envelope of a stream of grains forms
a periodic function. Since the envelope is periodic, the signal generated by QSGS can be analyzed as a case of
amplitude modulation (AM). AM occurs when the shape of one signal (the modulator) determines the
amplitude of another signal (the carrier). (See chapter 6 for more on modulation.) In this case the carrier is the
waveform within the grain, and the modulator is the grain envelope.

From a signal-processing standpoint, we observe that for each sinusoidal component in the carrier, the
periodic envelope function contributes a series of sidebands to the final spectrum. (Sidebands are additional
frequency components above and below the frequency of the carrier.) The sidebands are separated from the
carrier by a distance corresponding to the inverse of the period of the envelope function. For a stream of 20
ms grains following one after the other, the sidebands in the output spectrum are spaced at 50 Hz intervals.
The shape of the grain envelope determines the precise amplitude of these sidebands.

The result created by the modulation effect of a periodic envelope is that of a formant surrounding the carrier
frequency. That is, instead of a single line in the spectrum (denoting a single frequency), the spectrum looks like
a sloning hill (denoting a groun of freauencies around the carrier). OSGS

< previous page page 175 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 175.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 176 Page 1 of 1
< previous page page 176 next paage >
Page 176

Figure 5.14
A stream of five 40 ms grains at 1.06 KHz with a
Hanning envelope. In this case the delay period
between the grains varies slightly.

is, in this sense, similar to the formant synthesis methods VOSIM (Kaegi and Tempelaars 1978) and formant-
wave-function or FOF synthesis (Rodet 1980; Rodet, Potard, and Barri¢re 1984). (See chapter 7 for more
on VOSIM and FOF synthesis.)

By combining several streams of quasi-synchronous grains in parallel (each stream creating its own formant
around a separate frequency), the signal can simulate the resonances of the singing voice and acoustic
instruments.

When the interval between the grains is irregular, as in figure 5.15, this leads to a controllable thickening of the
sound texture through a "blurring" of the formant structure (Truax 1987, 1988). In its simplest form, the
variable-delay method is similar to amplitude modulation (AM) using low-frequency colored noise as a
modulator. (See chapter 6 for more on modulation.) In itself, this is not particularly interesting. The granular
representation, however, lets us take this technique far beyond simple noise-modulated AM. In particular, we
can simultaneously vary several other parameters on a grain-by-grain basis, such as grain waveform,
amplitude, duration, and spatial location. On a more global level, we can also dynamically vary the density of
grains per second to create a variety of striking effects.

Asynchronous Granular Synthesis

Asynchronous granular synthesis (AGS) gives the composer a precision spray jet for sound, where each dot
in the spray is a sonic grain (Roads 1991). AGS scatters grains in a statistical manner over a specified duration
within regions inscribed on the frequency-versus-time plane. These regions are called cloudsthe units with
which a composer works.

The composer specifies a cloud in terms of the following parameters, shown in figure 5.16.

1. Start time and duration of the cloud.

< previous page page 176 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 176.html 5/23/2011

< previous page

Schematic depiction of three streams in quasi-
synchronous granular synthesis. The placement of
a stream on the vertical axis indicates the grain
frequency (i.e., the frequency of the waveform). The
onset time between the grains is randomized.

2. Grain duration (usually from 1 to 100 ms, but it can also vary above and below these bounds). The grain
duration can be set to a constant, random within limits, derived from a curve, or it can vary as function of the
frequency of the grain, where high-frequency grains have shorter envelopes.

3. Density of grains per second; for example, if the grain density is low, then only a few grains are scattered at
random points within the cloud. If the grain density is high, grains overlap to create complex spectra. The
density can vary over the duration of the cloud.

4. Bandwidth of the cloud, usually specified by two curves that form high-and low-frequency boundaries within
which grains are scattered (cumulus clouds); alternatively, the frequency of the grains in a cloud can be
restricted to a specific set of pitches (as in the stratus clouds).

5. Amplitude envelope of the cloud.

6. Waveform(s) within the grains; this is one of the most powerful cloud parameters. For example, each grain
in a cloud can have a different waveform: waveforms can be svnthetic or samnled.

< previous page

page 178

Fragquency
band

Grain
dansity

Amplitude

Spatial
distribution

Wavelorm

Grain

Basic specilicalion

Alternative specifications

1 2

3

22
KHz

Cumulus cloud

Stratus cloud

Al el ol
AT T

bl alh,

'|FI|I' T |]| I

Random
spatial
disparsian

Random
wavaform
mixtura

Fregquency-

Randaom
duration

.—-—"'‘—‘-..._“\

dependent
durafion

duration

Figure 5.16
Pictorial representation of cloud parameters in asynchronous granular
synthesis. The column labeled 1 shows the typical parameter ranges.
Column 2 shows basic specifications for standard clouds. Column 3
shows alternative specifications for the frequency band, spatial
distribution. waveform. and grain duration narameters.

page 178

This version of Total HTML Converter is unregistered.

page 179 Page 1 of 1
< previous page page 179 next paage >
Page 179
7. Spatial dispersion of the grains in the cloud, where the number of output channels is specific to a given
implementation.

By varying these seven parameters of AGS one can realize a wide range of effects. The rest of this section
summarizes, in capsule form, the duration, waveform, frequency band, density, and spatial effects. The
waveform and bandwidth parameters apply only to synthetic and not sampled grains. For a more detailed
analysis of parametric effects in AGS, see Roads (1991).

As 5.16 shows, grain durations can be either constant (a straight line), variable, random between two limits, or
frequency-dependent.

Grain duration changes the sonic texture of a cloud. Short durations lead to crackling, explosive sonorities,

while longer durations create a much smoother impression. A profound law of signal processing comes into
play in setting the grain duration: the shorter the duration of an event, the greater its bandwidth. Figure 5.17
demonstrates this law for three elementary signals.

Figure 5.18 shows the spectral effects of lowering the grain duration. Notice how the bandwidth expands
dramatically as the grain duration shrinks.

Since the waveform can vary on a grain-by-grain basis, we can fill clouds with grains of a single waveform or
multiple waveforms. A monochrome cloud uses a single waveform, for example, while a polychrome cloud
contains a random mixture of several waveforms. A transchrome cloud mutates statistically from one
waveform to another over the duration of the cloud.

For a cumulus cloud (figure 5.19a; see also figure 5.11, column 2), the generator scatters grains randomly
within the upper and lower frequency bands. By narrowing these bands to a small interval we can generate
pitched sounds. Various types of glissandi are easily achieved (figure 5.19b). An alternative specification is the
stratus cloud (figure 5.19c¢; see also figure 5.11, column 3), where the grains are constrained to fall on a single
pitch or specific pitches to create chords and pitch clusters.

The grain density combines with the bandwidth parameter to create various effects. Sparse densities,
regardless of bandwidth, create pointillistic textures. At high grain densities, narrow frequency bands create
pitched streams with formant spectra, while wide bands (an octave or more) generate massive blocks of
sound.

Finally, in AGS as in all forms of granular synthesis, multichannel spatial distribution enhances granular texture.
The spatial algorithm of a cloud can involve random scattering or panning effects over the duration of the cloud
event.

< previous page page 179 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 179.html 5/23/2011

< previous page page 180 next paage >
Page 180

Sinusalid Gaussian signal Impulse (click)
(Hram § = —ato t = 4=}

Pawer lavel =——p
Enargy density —
Energy density —

fa
Frequancy —» Frequency —
(L) (el

Figure 5.17
Time-
domain functions (top) and spectra (bottom) of three elementary signals, after Blauert (1983). («) Sine wave
of infinite duration corresponds to a single line in the spectrum. (b) Gaussian grain and corresponding formant
spectrum. (¢) Brief impulse and corresponding infinite spectrum.

Time Granulation of Sampled Sounds

The time granulation of recorded (sampled) sounds feeds acoustic material into a kind of logical thrashing
machinedelivering grains in a new ordering with a new microrhythm. That is, the granulator reads in a small
part of a sampled sound (from a sound file or directly from an analog-to-digital converter) and applies an
envelope to the portion read in. The order in which this grain is emitted (i.e., its delay) depends on the settings
selected by the composer.

Time granulation takes three paths:
1. Granulation of a stored sound file, like a musical note, an animal sound, or a spoken text
2. Continuous real-time granulation of a given input sound or time scrambling (Truax 1987, 1988, 1990a, b)

3. Continuous real-time granulation of a given input sound with playback at variable time rate (Truax 1987,
1988. 1990a. b)

next page >

< previous page

ce.., D
.. f 333m
. BETm
SRR I W 11 =
ST 133
I f1e6s
©T O 2.00s

058 07F 088 102 117 kHe
M f 'ﬁ
\‘ I,
3 %

\ |
‘w “h ﬂ U | W U w\

Figure 5.18
Spectral effect of the grain duration. (a) Spectrum of a cloud at a constant frequency of
500 Hz with 100 ms grains. Notice the formant region centered at 500 Hz. Time is plotted
from back to front. (b) Spectrum of a cloud at a constant frequency of 500 Hz but with
1 ms erains. Notice the width of the snectrum.

it
‘\

page 181 next page >

< previous page page 182 next paae >

Page 182

3
T
1
1
]
I
I
1
i
F

Figure 5.19
Cloud forms. (a) Cumulus. (h) Glissandi. (¢) Stratus.

< previous page page 183 next paage >

-1

ANAANNANNN

Replication

Page 183

(@)

ANANNANANA

Reordering

(3
IAVAVAVAVAVAVAVAYAVA

Merging and recrdering

Figure 5.20
Three approaches to time granulation from stored sound
files. (@) One grain is extracted and turned into a "roll." (b)
Grains are randomly extracted from a sound file and
recordered. (c) Grains are randomly chosen from different
sound files and reordered. The grains need not be strictly
sequential and may overlap.

The first case is the most flexible since one can extract grains from the file in any order. For example, one can
extract a single large grain from a snare drum and clone a periodic sequence of hundreds of grains to create a
snare drum roll (figure 5.20a). Alternatively the grain generator can sample randomly grains from longer file,
such as speech or several notes, thus reordering them (figure 5.20b). An extension of this technique is to
randomly sample several sound files and interweave their grains to create multicolored textures (figure 5.20c).
These interwoven sound fabrics vary widely depending on the pitch and timbre of the individual grains used
Case (2) above involves real-time granulation of continuous sound with the computer acting as a delay line or
window that can be tanped to furnish the various erains. (See the descrintion of delav lines and taos in chanter

This version of Total HTML Converter is unregistered.

page 184 Page 1 of 1
< previous paqge page 184 next page >
Page 184

10.) In this case the spectral side effects of the granulation distort and enrich the sound in a controllable way.

Case (3) resembles case (2) except that the playback rate can be varied by a parameter that controls the
speed at which synthesis advances through the samples. The playback can vary from normal speed to a
slowed-down rate in which a single sample is repeated over and over again. Hence this method can be thought
of as an interpolation between case (1) and case (2).

Assessment of Granular Synthesis

Granular synthesis constitutes a diverse body of techniques that share only the concept of sonic grains. The
granular representation is purely internal in Fourier and wavelet analysis, hidden from users. Indeed, a technical
goal of these methods is creating the illusion of continuous, analog-like signal processing. A granular sonority
appears only in pathological distortions such as too large a hop size in overlap-add resynthesis (see chapter
13). The pitch-synchronous analysis/resynthesis of A. Piccialli and his colleagues makes the granular
representation more explicit. Techniques like quasi-synchronous granular synthesis (as developed by B. Truax)
have been implemented on a variety of platforms.

Asynchronous granular synthesis (AGS) has proven valuable in modeling sounds that would be difficult to
describe using earlier techniques. AGS sprays sonic grains into cloudlike formations across the audio
spectrum. The result is often a particulated sound complex that can act as a foil to smoother, more sterile
sounds emitted by digital oscillators. Time-varying combinations of clouds lead to dramatic effects such as
evaporation, coalescence, and mutations created by crossfading overlapping clouds. A striking analogy exists
between these processes and those created in the visual domain by particle synthesis (Reeves 1983). Particle
synthesis has been used to create fire, water, clouds, fog, and grasslike textures, which are analogous to some
of the audio effects possible with AGS (crackling fire, water gurgling, windy gusts, explosions). Finally, in
combination with time granulation and convolution (Roads 1993a), granular methods are evolving from pure
synthesis techniques to sound transformation applications.

Subtractive Synthesis

Subtractive synthesis implies the use of filters to shape the spectrum of a source sound. As the source signal
nasses through a filter. the filter boosts

< previous page page 184 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 184.html ~ 5/23/2011

< previous page page 185 next paae >

Page 185

or attenuates selected regions of the frequency spectrum. If the original source is spectrally rich and the filter is
flexible, subtractive synthesis can sculpt close approximations of many natural sounds (such as voices and
traditional instruments) as well as a wide variety of new and unclassified timbres.

The rest of this section introduces the main tool of subtractive synthesisfiltersand leads to the section dealing
with subtractive analysis/ resynthesis techniques. In chapter 10 we go into more detail about the internal
operation of filters. Here we are content to describe their effects.

Introduction to Filters

A filter can be literally any operation on a signal (Rabiner et al. 1972)! But the most common use of the term
describes devices that boost or attenuate regions of a sound spectrum, which is the usage we take up here.
Such filters work by using one or both of these methods:

Delaying a copy of an input signal slightly (by one or several sample periods) and combining the delayed
input signal with the new input signal (figure 5.21a)

Delaying a copy of the output signal and combining it with the input signal (figure 5.21b)

ol

T Output

(@}

(b}

|
[Pt ‘é o = Chutput

Figure 5.21
Two basic digital filters. (a) Delay the input and
add it (FIR) (feed-forward). (b) Delay the output
and add it (TIR) (feedback).

This version of Total HTML Converter is unregistered.

page 186 Page 1 of 1
< previous page page 186 next paage >
Page 186

Although figure 5.21 shows combination by summation (+), the combination can also be by subtraction (). In
either case, the combination of original and delayed signals creates a new waveform with a different spectrum.
By inserting more delays or mixing sums and differences in various combinations, one can construct a wide
range of filter types.

Next we discuss the properties of various filters. Since our main goal is to explain musical applications of
subtractive synthesis, we do not dwell on how digital filters are implemented, or on the mathematics of filter
theory. Chapter 10 contains a basic introduction to that vast universe. (See also Moorer 1977 and Moore
1978a, b.) Those with an engineering background could study texts such as Moore (1990), Smith (1985a,
1985b), Oppenheim and Willsky (1983), Rabiner and Gold (1975), and Oppenheim and Schafer (1975),
among many others.

Filter Types and Response Curves

One of the main ways to characterize the various types of filters is to plot their amplitude-versus-frequency
response curve. The specifications of audio equipment usually include a figure for "frequency response.” This
term is a shorter form of amplitude-versus-frequency response. The most accurate frequency response is a
straight line which indicates a /inear or flat amplitude across the frequency spectrum. This means that any
frequency within the range of the audio device is passed without any boost or attentuation. Figure 15.22a
shows a nearly flat frequency response, typical of a high-quality audio system. Here we show an arbitrary
upper limit of 25 KHz. For high-quality analog audio components such as preamplifiers and amplifiers, the
frequency response may extend up to 100 KHz. As chapter 1 explained, the frequency limits of digital audio
systems depends on their sampling rate.

Practical devices are less than perfectly flat. Figure 5.22b shows the frequency response of a nonlinear system
such as a small loudspeaker. We could describe the frequency response of this loudspeaker as follows: +3,
2.5 dB from 100 Hz to 16 KHz. This means that the loudspeaker boosts some frequencies by as much as 3
dB and attenuates other frequencies by as much as 2.5 dB over the specified range. Below 100 Hz and above
16 KHz the response falls off sharply. Since it alters the spectrum of a signal fed into it, the loudspeaker acts
as a kind of filter.

Each type of filter has its own characteristic frequency response curve. Typical frequency response curves for
four basic types of filters are shown in figure 5.23: lowpass, highpass, bandpass, and bandreject or notch.

Shelving filters, shown in figure 5.24, boost or cut all frequencies above or below a given threshold. Their
names can be confusing. because a hioh

< previous page page 186 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 186.html 5/23/2011

< previous page

Meaary Flal

Fraguency

Monlinear

18KHz 25 KHz

Frequency

Figure 5.22
Amplitude-versus-frequency response, colloquially called
"frequency response." The vertical axis is amplitude in
decibels, and the horizontal axis is frequency. () Nearly flat
response. (b) Nonlinear response.

shelving filter acts like a lowpass filter when it is adjusted to cut high frequencies, and a low shelving filter
acts like a highpass filter when it is adjusted to cut low frequencies.

An important property of a filter is its cutoff frequency. Figures 5.23 and 5.24 show the cutoff frequency of
the lowpass and highpass filters. By convention, this is the point in the frequency range at which the filter
reduces the signal to 0.707 of its maximum value. Why 0.707? The power of the signal at the cutoff frequency
is proportional to the amplitude of the signal squared, since 0.7072 = 0.5. Thus, the cutoff frequency is also
called the half-power point. Yet another term for the cutoff frequency is the 3 dB point (Tempelaars 1977).
This is because 0.707 relative to 1.0 is close to 3 dB.

Spectral components that are attenuated below the half-power point of a filter are said to be in the stopband
of a filter. Those above the half-power point are said to be in the passband of the filter. The difference
between the higher and lower cutoff frequencies in a bandpass filter is the bandwidth of the filter. The center
freauencv of a bandpass filter is the maximum noint of

next page >

< previous page

Lowpass

Highpass

Cutofi
frequency

Cutoff
freguency
Y

Fraguency

Frequency

Bandpass

Bandreject

Center
frequency

Ceanter

fraquancy
¥

)

L

Frequancy Frequency

Figure 5.23
Four common types of filters.

amplitude; the center frequency of a bandreject filter is the minimum point of amplitude.

In an ideally sharp filter, the cutoff frequency is a kind of brick wall: anything outside it is maximally attenuated,
dividing the frequency response neatly into a passband and a stopband (figure 5.25a). In actual filters, the
slope of the filter is not linear leading up to the cutoft frequency (there is a ripple in the frequency response),
and the area between the passband and the stopband is called the transition band (figure 5.25b).

The steepness of a filter's slope is usually specified in terms of decibels of attenuation or boost per octave,
abbreviated "dB/octave." For example, a 6 dB/octave slope on a lowpass filter makes a smooth attenuation
(or rolloff), while a 90 dB/octave slope makes a sharp cutoff (figure 5.26).

The use of a smooth or sharp slope depends on the musical situation. For example, a sharp notch filter might
be needed to eliminate a tone centered on a particular frequency, while a gentle lowpass filter could be the
most unobtrusive wav of attenuating backeround noise in the high-freauencv range.

< previous page page 189 next page >
Page 189

High shelf point
1

Boost

\cm

Frequency —=

Low shelf point
I

Bausl\
Cut /

Frequency —==

Figure 5.24
Shelving filters. (a) High shelving filter. Above the
shelf point, the signal can be either boosted or cut.
If the signal is cut, the effect of a high shelf filter is
equivalent to a lowpass filter. (b) Low shelving filter.
Below the shelf point, the signal can be either
boosted or cut.

Filter O and Gain

Many bandpass filters have a control knob (either in software or hardware) for Q. An intuitive definition of Q is
that it represents the degree of "resonance" within a bandpass filter. Figure 5.27 shows a filter adjusted to
various values of Q. When the Q is high, as in the narrowest inner curve, the frequency response is sharply
focused around a peak (resonant) frequency. If a high-Q filter is excited by a signal near its center frequency,
the filter 7ings at the resonant frequency, that is, it goes into oscillation, for some time after the signal has
passed.

O can be defined precisely for a bandpass filter as the ratio of the center frequency to the spread of its 3 dB
point (cutoft point) bandwidth:

=in .lf:' {'J:I' Ter
ﬁe igheutafl — ffﬂ weniofl

< previous page page 190 next paage >
Page 190

Passband | Stopband

Freq.—= T
Cutoff frequency

Transition
band

Stopband

I
!
I
I
I
I
]
I
I
I
i
1

1
i
I
1
I
I
I
Passband :
1
1
i

Freg, ——= T
Cutoff frequency

Figure 5.25
Ideal versus nonideal filters. (a) In an ideal filter,
the frequencies affected by the filter can be neatly
divided into a passband and a stopband, and the
cutoff is rectangular. (b) In a nonideal (actual) filter,
the response curve shows ripple, and there is a more
or less steep transition band between the passband
and the stopband.

where fcenter is the filter's center frequency, fhighcutoff is the upper 3 dB point, and flowcutoff is the lower
3 dB point. Notice that when the center frequency is constant, adjusting the Q is the same as adjusting the
bandwidth. Here is an example of a calculation of the Q of a filter. We define a bandpass filter with a center
frequency of 2000 Hz and 3 dB points of 1800 and 2200 Hz. This filter has a O of 2000/(2200 1800) = 5.
High Q resonant filters like this are useful in generating percussive sounds. Tuned drums like tablas, wood
blocks, claves, and marimba effects can be simulated by exciting a high O resonant filter with a pulsetrain.

Another property of a bandpass or bandreject filter is its gain. This is the amount of boost or cut of a
frequency band. It shows up as the height (or depth) of the band in a response curve (figure 5.28). When
passing a signal through a high Q filter, care must be taken to ensure that the gain at the resonant frequency (the
height at the peak) does not overload the system, causing distortion. Many systems have gain-compensation
circuits in their filters that nrevent this kind of overload.

< previous page next paae >

Page 191

Gentle slope

I I ! |
500 002 2000 40400 A000

Frequancy

Sharp slopa

|
|
|
|
|
|
!
T

I I T
500 1000 2000 4000 000

Fraguency

Figure 5.26
Filter slopes. (a) Gentle slope. (b) Steep slope.

Freguency — =

Figure 5.27
A filter set at various values for Q. A high O corresponds to a narrow
response. The gain (height of the peak) is constant.

page 191

< previous padge page 192 next paae >
Page 192

Freguenoy ——e=

Figure 5.28
Different gain factors applied to the same filter. The
bandwidth and O remain constant.

(a)

®

| | | | |
3 BK 10K 12K 14K

Frequency (linear)

®

L | I| |I|I|I|I

2 40 1mmﬁm1m25}<5}<1m2m{

Fraquency {logarithmic)

Figure 5.29
The same constant Q filters plotted on linear and logarithmic
frequency ranges. Filter 1 has a center frequency of 30 Hz and
extends from 20 to 40 Hz in bandwidth. Filter 2 has a center
frequency of 9 KHz and extends from 6 to 12 KHz. (@) Linear.
(b) Logarithmic.

< previous page page 193 next paae >

Page 193

A special type of bandpass filter is called a constant Q filter. To maintain a fixed Q, a constant Q filter must
vary its bandwidth as a function of the center frequency. For example, when the center frequency is 30 Hz and
the Q is 1.5 (or 3/2), the bandwidth is 20 Hz, because 30/20 = 1.5. But if we tune the filter to 9 KHz and
keep the Q constant at 1.5, then the bandwidth must be equal to 2/3 of the center frequency, or 6000 Hz.
Figure 5.29 shows the curve of two constant Q filters plotted on linear and logarithmic frequency ranges. On a
linear scale (figure 5.29a), the filter centered at 30 Hz appears as a very narrow band, while the filter centered
at 9 KHz appears to have a much broader curve. On a logarithmic scale, the filters have the same shape
(figure 5.29b).

A constant Q filter has the musical quality that the frequency interval it spans does not change as the center
frequency changes. For example, a constant Q filter centered at A440 Hz with a Q of 1.222 spans the same
musical interval as a filter with a O of 1.222 centered at A880 Hz (C260 to D620, as compared with C520 to
D1240, respectively).

Filter Banks and Equalizers

A filter bank is a group of filters that are fed the same signal in parallel (figure 5.30). Each filter is typically a
narrow bandpass filter set at a specific frequency. The filtered signals are often combined to form the output
sound. When each filter has its own level control the filter bank is called a

EEHEEEHEEE
E||& a3 =
Gllo||le 3] =1

i
o

Figure 5.30
A ten-stage spectrum shaper with a control
knob (boost or attenuate) associated with
each freauencv band.

e 193

This version of Total HTML Converter is unregistered.

page 194 Page 1 of 1
< previous paqge page 194 next page >
Page 194

spectrum shaper because the individual controls can radically modify the spectrum of the input signal. A
spectrum shaper can be used to boost certain frequency regions or virtually eliminate others.

Another term for a spectrum shaper is an equalizer. The filtering it performs is called equalization. The term
"equalization" derives from one of its original applications, namely, to compensate for irregularities in the
frequency response of telephone channels and public address systems (Fagen 1975). For example, if a hall has
a resonant boom at 150 Hz, an electronic equalizer can deemphasize that frequency and therefore compensate
for the hall's exaggeration of it.

A graphic equalizer has controls that mirror the shape of the filter's frequency response curve (figure 5.31a).
Each filter has a fixed center frequency, a fixed bandwidth (typically one-third of an octave), and a fixed Q.
(Some units can switch between several Q settings.) The response of each filter can be varied by means of a
linear fader to cut or boost specific frequency bands. The potential frequency response of such a filter is shown
in figure 5.31b.

A parametric equalizer involves a fewer number of filters, but the control of each filter is more flexible. A
typical arrangement is to have three or four filters in parallel. Users can adjust independently the center
frequency. the O. and the amount of cut or boost of each filter. A semiparametric equalizer has a fixed O.

Comb and Allpass Filters

Two more filter types merit mention here before they are discussed in chapters 10 and 11. A filter that has
several regular sharp curves in its frequency response is called a comb filter. Figure 5.32 shows the frequency
response curves of two types of comb filters. One has deep notches in its response, while the other has steep
peaks. The derivation of the term "comb" should be clear from these curves. Chapter 10 contains a more
complete description of comb filters and their musical applications.

The final filter to mention is an allpass filter. For a steady-state (unchanging) sound fed into it, an allpass filter
passes all frequencies equally well with unity gainhence its name. The purpose of an allpass filter is to introduce
a frequency-dependent phase shift. All filters introduce some phase shift while attentuating or boosting certain
frequencies, but the main effect of an allpass filter is to shift phase. If the input signal is not steady-state, the
allpass colors the signal, due to the frequency-dependent phase-shifting effects. This coloration is particularly
evident on transient sounds where nhase relations are so imnortant to sound aualitv.

< previous page page 194 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 194.html 5/23/2011

< previous page

%%E

100 250 600 1200 4000

JUNENNENEN

20 40 BO 160 320 640 1.2K 25 10 20

Frequency
{lagarithmic)

Figure 5.31
Graphic equalizer. (a) A seven-band graphic equalizer with linear
potentiometers set to arbitrary levels. (b) The potential frequency
resnonse curve of a seven-band eranhic eaualizer.

< previous page page 196

Frequency —

Frequeancy —=

Figure 5.32
Comb filter frequency response curves.
(a) FIR comb. (b) IIR comb. (See chapter
10 for an explanation of FIR and IIR.)

One application of an allpass filter is to correct for the unwanted phase shift of another filter. Allpass filters can
also be used in musical sound processing. Here an allpass filter can imposes a time-varying, frequency-
dependent phase shift on the input signal, which can lend richness to sounds. Allpass filters are one of the
building blocks of digital reverberators. Chapters 10 and 11 discuss applications of allpass filters.

Time-varying Subtractive Synthesis

Filters can be fixed or time-variant. In a fixed filter, all the properties of the filter are predefined and do not
change over time. This situation is typical of conventional music recording where the sound engineer sets the
equalization for each channel at the beginning of the piece.

Time-variant filters have many musical applications, particularly in electronic and computer music where the
goal is to surpass the limits of traditional instruments. A bandpass filter whose O, center frequency, and
attenuation change over time can impose a enormous variety of sound colorations, particularly if the signal
being filtered is also time-varying. An example of a time-varying filter is a parametric equalizer section in a
mixing console. The mixing engineer can change the . center freauencv. and

page 196

This version of Total HTML Converter is unregistered.

page 197 Page 1 of 1
< previous page page 197 next paage >
Page 197

amount of cut or boost at any time during the mixing process, or these parameters can be programmed to
change automatically.

A prime example of a system for time-varying subtractive synthesis is the SYTERa digital signal processor
developed in the late 1970s at the Groupe de Recherches Musicale (GRM) studio in Paris by Jean-Frangois
Allouis and associates (Allouis 1979; Allouis and Bernier 1982). Much of the SYTER software has since been
ported to run on a signal-processing card for a personal computer (INA/GRM 1993).

SYTER was used as an engine for time-varying subtractive synthesis by composers such as Jean-Claude
Risset in his composition Sud realized in 1985 (Wergo recording 2013-50). Running software written by B.
Maillard, SYTER realized several dozen high O bandpass filters in real time with dynamic parameter changes.
The filters could also be driven by data generated from Fourier analysis of a sound (see the next section on
subtractive analysis/resynthesis). When full-bandwidth sounds such as water and wind were processed through
the system, the resonant filters "rang" in musical chords and clusters. Rich comb filter and phasing effects could
also be created (see chapter 10).

Subtractive Analysis/Resynthesis

As with additive synthesis, the power of subtractive synthesis is enhanced by coupling an analysis stage to it.
Analysis/resynthesis systems based on subtractive filters rather than on additive oscillators are capable of
approximating any sound. In practice, most of the analysis and data reduction techniques employed in
subtractive analysis/resynthesis are geared toward speech synthesis, since this is where most of research has
been concentrated (Flanagan et al. 1970; Flanagan 1972).

Music research in subtractive analysis/resynthesis has focused on extending speech-oriented tools (such as
linear predictive coding, discussed later in this chapter), to the domain of wide-bandwidth musical sound.

The Vocoder

The original subtractive analysis/synthesis system is the vocoder, demonstrated by a talking robot at the 1936
World's Fair in New York City (Dudley 1936, 1939a, 1939b, 1955; Dudley and Watkins 1939; Schroeder
1966; Flanagan 1972). The classic analog vocoder consists of two stages. The first stage is a group of fixed-
freauencv bandnass filters distributed over

< previous page page 197 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 197.html ~ 5/23/2011

< previous page page 198 next paage >

Page 198

Sourca B {excitation)

Source A
(driving functions
OF resonances)

Stage 2

Figure 5.33
Vocoder. Stage 1 is the analysis part, and stage 2 is the
synthesis. "F" stands for filter, "ED" stands for envelope
detector, and "A" stands for voltage- controlled amplifier
an amplifier whose gain is determined by a control
voltage fed into it from the envelope detector. The same
structure can also be realized in digital form.

the audio bandwidth. The output of each filter is connected to an envelope detector that generates a voltage
proportional to the amount of energy at the frequency tracked by the filter (figure 5.33).

The second stage of the vocoder is a bank of bandpass filters, identical to the first stage. All filters are sent the
same input signal, and the output of each filter is sent to its own voltage-controlled amplifier (VCA). The
outputs of all the VCAs combine into an output signal. The filters and detectors in the first stage generate
control signals (also called driving functions) that determine the amplitude of the audio signal coming from the
filters in the second stage of the vocoder.

Referring to figure 5.33, source A is the signal from which the formant spectrum is derived, such as a singing
voice. If we were to trace an outline

page 198

< previous page page 199 next paae >

I

Fragueancy

Page 199

Frequency

Figure 5.34
The effect of formant filters on an excitation function. (a)
Simplified view of an excitation function like the spectrum
produced by the open vocal cords; a buzz sound with a
number of equal-strength harmonics. (b) Simplified view
of the spectrum of a vowel showing four formant peaks
labeled 1. 2, 3, and 4.

of this spectrum it would form the spectral envelope or resonance curve. Source B is the excitation
function. The excitation function is usually a wide-bandwidth signal such as white noise or a pulsetrain. The
output of this vocoder consists of the excitation function of source B with the time-varying spectral envelope of
the singing voice of source A. Figure 5.34 depicts graphically the process of formant filtering applied to an
excitation function.

The original mandate of vocoder research was data reduction for synthetic speech. The data rate and channel
requirements of the slow-moving driving functions are indeed much less than those of the original signal.

In musical applications the separation of the driving functions (or resonance) from the excitation function means
that rhythm, pitch, and timbre are independently controllable. For example, a composer can change the pitch
of a singing voice (by changing the frequency of the excitation function), but retain the original spectral
articulation of the voice. By stretching or shrinking the driving functions over time, a piece of spoken text can
be slowed down or sned un without shifting the itch or affecting the formant structure.

next page >

This version of Total HTML Converter is unregistered.

page 200 Page 1 of 1
< previous page page 200 next paage >
Page 200

Linear Predictive Coding

Linear predictive coding (LPC) or linear prediction is a subtractive analysis/resynthesis method that has
been extensively used in speech and music applications (Atal and Hanauer 1971; Flanagan 1972; Makhoul
1975; Markel and Gray 1976; Cann 1978, 1979, 1980; Moorer 1979a; Dodge 1985; Lansky 1987; Lansky
and Steiglitz 1981; Hutchins 1986a; Lansky 1989; Dodge 1989; Depalle 1991). LPC takes in a sound, such
as a speaking voice, analyzes it into a data-reduced form, and resynthesizes an approximation of it. LPC
speech is quite efficient in the sense that it requires much less data than sampled speech; an inexpensive
integrated circuit for LPC speech was developed in the early 1980s and was built into inexpensive speaking
toys (Brightman and Crook 1982).

From the standpoint of the composer, the power of the LPC technique derives from the fact that one can edit
the analysis data and resynthesize variations on the original input signal. LPC implements a type of vocoder.
That is, it separates the excitation signal from the resonance, making it possible to manipulate rhythm, pitch,
and timbre independently and permitting a form of cross-synthesis (explained later).

In speech, the vocal cords generate a buzzy excitation function and the rest of the vocal tract filters the sound
to create resonances. The frequency of the excitation pulse determines the pitch of the output sound. Since
LPC lets users manipulate the excitation independently, one can vary the excitation pitch to transform a talking
voice into a singing voice, for example.

What Is Linear Prediction?

Linear prediction derives its obscure name from the fact that in the spectrum analysis part of the system, output
samples are "predicted" by a linear combination of filter parameters (coefficients) and previous samples. A
prediction algorithm tries to find samples at positions outside a region where one already has samples. That
is, any extrapolation of a set of samples is prediction. Inherent in prediction is the possibility of being wrong;
thus prediction algorithms always include an error estimation.

A simple predictor simply continues the slope of difference between the last sample and the sample before it
(figure 5.35). This type of predictor can be made more sophisticated by taking more samples into account. It
can also take into account the error or difference between the sample it predicts and the actual value of the
signal. if this is known (and it is known in LPC).

< previous page page 200 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 200.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 201 Page 1 of 1
< previous padge page 201 next page >
Page 201
x[n+1]
x[n]’f -
iln-1]
Figure 5.35

Linear prediction extrapolates a set of points.

Since the predictor is looking at sums and differences of time-delayed samples, it can be viewed as a filtera
filter that describes the waveform it is currently processing. (See chapter 10 for more on digital filters.)

If we take regular snapshots of these filter coefficients over time, invert them, and then drive the resulting filter
with a rich, wide-bandwidth sound, we should have a good approximation of the time-varying spectrum of the
original input signal. Thus a "side effect" of the prediction is to estimate the spectrum of the input signal: this is
the important point. But spectrum estimation is only one stage of LPC analysis, the others being applied to
pitch, amplitude, and the voiced/unvoiced decision. These are briefly described in the following section.

LPC Analysis

Figure 5.36 shows an overview of LPC analysis. LPC analysis branches into four directions: (1) spectrum
analysis in terms of formants, (2) pitch analysis, (3) amplitude analysis, and (4) the decision as to whether the
sound was voiced (pitched) or unvoiced (characteristic of noisy sounds). Each stage of analysis is carried out
on a frame-by-frame basis, where a frame is like a snapshot of the signal. Frame rates of between 50 and 200
frames per second are typical in LPC analysis.

Filter Estimation

The next several paragraphs describe the operation of LPC analysis in general terms, but let us begin with a
point about filter terminology used in LPC analysis. Engineers describe bandpass and bandreject filters in terms
of the nosition of their noles and zeros (Rabiner and Gold 1975). Without

< previous page page 201 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 201.html 5/23/2011

< previous page page 202 next paage >
Page 202

[rput signal

= Allpole filter

coefficients
(per frame)

Formant

analysis Residual Error

Pitch | . Pitch
= detector {per frame)

: L Yoiced!
Voicediunvoiced | e ynvoiced

analysis decision
Iper frame)

RS

Amiplituce o Smplitude
detector (per frame)

Figure 5.36
Four stages of LPC analysis. Spectrum (formant) analysis, pitch
detection, voiced/unvoiced analysis. and amplitude detection.

going into the details of pole-zero diagrams (see any text on signal processing) let us just say that a filter pole
1s a point of resonancea peak or formant region in a spectrum plot. In contrast, a zero is a null point or notch in
the spectrum.

When a filter has several smooth peaks it is called an allpole filter. This type of filter is characteristic of LPC,
which models spectra in terms of a few formant peaks. Such a model is a reasonable approximation to many
sounds uttered by the human voice and certain musical instruments.

As mentioned earlier, linear predictionor autoregressive analysis (see chapter 13)takes in several input
samples at a time, using the most recent sample as a reference. It tries to predict this sample from a weighted
sum of filter coefficients and past samples. As a side effect of this prediction, the algorithm fits an inverse filter
to the spectrum of the input signal. The inverse of an allpole filter is an allzero filter that creates a number of
notches in the spectrum of signals sent through it.

The LPC analyzer approximates the inverse of the filter that one ultimately wants for synthesis. If the
approximation is good, the result of linear prediction should be just the excitation signal (figure 5.37). In other
words, the inverse filter cancels out the effect of the spectral envelope of the sound. The approximation is
never nerfect so there is alwavs a signal called the

next page >

This version of Total HTML Converter is unregistered.

page 203 Page 1 of 1
< previous page page 203 next paage >
Page 203
@ sowon - Awgemer Jegs
‘r\
1 1 A
Amp, | Amp. Amp. I
Frequency Frequency Frequency
(b) Filtered Allzero inverse e
excitation filtar Excitation
! }
Amp. Amp. |
Fraquency Frequency Frequency

Figure 5.37
Relation of formant and inverse formant filters in the ideal case.
(a) Result of formant filter. (b) Result of inverse formant filter.

residual that is the excitation function (a series of impulses) plus noise. The goal of LPC spectrum analysis is to
minimize the residual.

Once a good fit to the inverse filter has been found, the inverse filter is itself inverted to create a resynthesis
filter. Filter inversion is mathematically straightforward (Rabiner and Gold 1975); the sign of all the filter
coefficients is reversed, and they are applied to past outputs instead of to past inputs. The filter is thus
converted from a FIR filter to an IR filter (see chapter 10). Chapter 13 discusses more of the internals of LPC
filter analysis. For an engineering description see (Markel 1972; Makhoul 1975; Moore 1990).

The reader may wonder: how does LPC know what is the excitation function of an arbitrary sound put into it?
The answer is: it doesn't, really. It assumes that the excitation is either a pitched pulsetrain or white noise. This
assumption works reasonably well in approximating speech and some instruments, but it is not a universal
model for all sounds. Thus the LPC method usually leaves traces of artificiality in the resynthesized sounds.
Some improved methods of LPC analysis impose a multipulse cluster instead of a single pulse at each pitch
period. where the form of the cluster (i.e.. amnlitude and snacing between nulses) derives from analvsis data

< previous page page 203 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 203.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 204 Page 1 of 1
< previous page page 204 next page >
Page 204

(Atal and Remde 1982). This helps reduce the artificial quality of LPC resynthesis.
Pitch and Amplitude Analysis

The pitch detection technique used in LPC can be any of the methods described in chapter 12. The particular
method used varies in different implementations. Figure 5.36 shows a scheme that tries to estimate the pitch
from the residual signal.

Several techniques exist for characterizing the amplitude of each frame. A typical way is to calculate it on a
frame-by-frame basis as an average value for the input waveform described by the frame.

Voiced/Unvoiced Decision

After pitch detection has been carried out, LPC analysis tries to make the voiced/unvoiced decision for each
frame. This decision is important since it determines whether the sound will be pitched or not in resynthesis. A
voiced sound has a pitch, like the vowels a, e, i, o, u created by the buzzing of the vocal cords. An unvoiced
sound is like the sibilance of s and z, the explosive ¢ and p, or the fricative f consonants. Besides voiced or
unvoiced, a third category of excitation is "mixed voice," combining a pitched tone and noise, like the |z| of

In analyzing a wind instrument tone the voiced/unvoiced data usually indicate the amount of breathiness, and
for a violin-like sound they can indicate bow-scraping noise. In resynthesis, voiced sounds are modeled by a
pitched pulsetrain, while unvoiced sounds are modeled by white noise. Both are filtered, of course.

The voiced/unvoiced decision is hard to fully automate (Hermes 1992). In LPC systems that have been
adapted for music, the analysis makes a first pass at the decision, but the composer is expected to make
corrections to particular frames (Moorer 1979). The first-pass decision uses various heuristics. Figure 5.36
shows the result of pitch detection feeding into the voiced/unvoiced decision. For example, if the analysis
cannot identify a pitch in the input signal, then it generates a large pitch estimation error. When this
errornormalized to fall between 0 and 1.01s greater than a certain value (around 0.2), it is likely that the sound
at that moment is a noisy unvoiced sound like a consonant. The average amplitude of the residual is another
clue. If the amplitude of the residual is low in comparison to the amplitude of the original input signal, then the
signal is nrobablv voiced.

< previous page page 204 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 204.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 205 Page 1 of 1
< previous paae page 205 next page >
Page 205
Analysis Frames

The result of the analysis stage is a series of frames, representing a greatly data-reduced version of the input
signal. Each frame is described by a list of parameters, including the following:

Average amplitude of the residual sound

Average amplitude of the original sound

Ratio of the two amplitudes (helps determine whether the frame is voiced or unvoiced)
Estimated pitch

Frame duration

Coefficients for the allpole filter (each pole creates a formant peak in the spectrum)

Figure 5.38 shows an example of the frame data for the word "sit" (Dodge 1985). The filter coefficients are
omitted for clarity.

The ERR column is a strong clue as to whether the frame is voiced or not. A large value for ERR (greater than
0.2) usually indicates an unvoiced frame. But this indicator should be checked, since the voiced/unvoiced
decision is difficult to automate perfectly. Notice how the ERR values change significantly at the boundary of
"S"and "I['". The RMS1 and RMS2 values are a better indicator of change at the boundary of "I'" and "T".

LPC Synthesis

Figure 5.39 depicts the synthesis stage of LPC. The first parameter is the frame duration, which determines the
number of output samples generated from a given set of parameters. The next parameter determines whether
the frame is voiced or unvoiced. For standard voiced frames, the synthesizer uses the pitch parameter to
simulate the excitation function (the glottal wave) of the human voice. This is a "buzzy" sound (typically a band-
limited pulsetrain) used for vowels and dipthongs (sequences of vowels such as the "oy" on "toy"). For
unvoiced frames, the synthesizer uses a noise generator to simulate turbulence in the vocal tract.

The output of the appropriate generator, shaped by the amplitude parameter, serves as input to the allpole
filter. For speech and singing work, the allpole filter simulates the resonances of the vocal tract. Up to twelve
poles in the allpole filter are used in speech synthesis, and as many as 55 or more poles have been used in
music svnthesis (Moorer 1979a).

< previous page page 205 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 205.html 5/23/2011

< previous page page 206 next page >

Page 206

Phoneme RMS2 RMS1 ERR

B13.27 1618.21
11849.36 2090.14
553.71 B38.38
T42.5% 1183.17
1041.95 1918.33
1449.16 2677.06
1454.84 2920.50
1430.03 2496.88
1570.88 2381.21
1443.27 2665.22
1172.67 2150.50
1200.73 2080.20
1095.51 2055.25
1260.36 2408.14
1105.17 2293.05
B09.10 1659.80
428,20 T84.83

419.45 Joge.15
925.86 6I166.20
T46.28 Af46.81
g29.82 B277.42
754.64 A049.50
771.84 BO0L.TO
T26.81 7955.17
807.63 TH3ISE.Z20
g74.27 1732.59
TT6.87 7491.86
G6id. 64 7317.04
560.87 6297.38
175.63 1842.81

4§6.53 1328.09

Figure 5.38
A sequence of LPC frames as they might be displayed for editing purposes, after Dodge (1985).
The Phoneme column is added for clarity in this figure. The RMS2 column indicates the residual
amplitude, RMSI1 is the original signal amplitude. ERR is an approximation to the ratio between
the two and indicates an unvoiced signal if the ratio is high. PITCH is the estimated pitch in Hz,
DUR is the frame duration in seconds.

page 206

< previous page page 207

Read edited
parameters

L 2

Set frama size

'

Vioiced/unvoiced

decision

PFitch
detaction
Moise
l gensratar

Pulse
genarator

Amplitude

rmultipliar

;

Allpole
filkar

!

Cutput signal

Figure 5.39
Overview of LPC synthesis.

Editing LPC Frame Data

The LPC technique can be adapted from pure speech work to musical purposes by means of an associated
editing and mixing subsystem. In an article on composing with LPC, Dodge (1985) describes an editing
command language that performs the operations shown in table 5.1 on LPC parameter frames. One of the
main applications of these operations on LPC frames is to transform a plain spoken utterance into singing.
Using LPC, a word can be expanded in time, and the original spoken pitch curve can be replaced with a
flowing melody. Words and phrases can be repeated or rearranged at will. Sentences can also be compressed
in time without affecting their original pitch.

Composers such as Charles Dodge and Paul Lansky have used LPC to achieve all these effects, in pieces
such as Dodee's Sneech Sones (1975) and

This version of Total HTML Converter is unregistered.

page 208 Page 1 of 1
< previous page page 208 next paage >
Page 208

Table 5.1 Operations on LPC frames

Stretch or shrink the duration of the frame

Dilate the duration of frames between frame A and frame B
Change specific parameter values in a group of frames
Interpolate values between a group of frames (or create a pitch glissando, for
example)

Move frames from point 4 to point B

Boost the amplitude of a frame

Crescendo over a group of frames

Set the pitch of a frame

Trill on every other frame

Lansky's Six Fantasies on a Poem by Thomas Campion (1979), and Idle Chatter (1985, Wergo compact
disc 2010-50).

Musical Extensions of Standard LPC

LPC can implement a form of cross-synthesis (Mathews, Miller, and David 1961; Petersen 1975; Moorer
1979a). Cross-synthesis means different things depending on the system being used (LPC, convolution, phase
vocoder, wavelets, etc.). In general, it refers to techniques that start from an analysis of two sounds and use
the characteristics of one sound to modify the characteristics of another sound, often involving a spectrum
transformation. LPC cross-synthesis takes the excitation from one source sound (pitch and event timing) to
drive the time-varying spectral envelope derived from another source. For example, one can replace the simple
pulsetrain signal used to create voiced speech by a complex waveform, such as the sound of an orchestra. The
resulting effect is that of a "talking orchestra." Figure 5.40 is essentially the same as the vocoder in figure 5.33,
except that the simple excitation function normally used in a vocoder is replaced by a wideband musical source
(source B), and the internal method of analysis/resynthesis uses the LPC method.

When the desired effect is to make source B "talk," the intelligibility of the speech can be enhanced by using
wide-bandwidth sources such as a full orchestra and chorusas opposed to a narrow-bandwidth source such as
a solo violin. If necessary, the excitation function can also be whitened to bring all spectral components up to a
uniform level (Moorer 1979).

Another extension of LPC synthesis extrapolates the filter response of a single instrument into a family of like
instruments. For example. starting with an analvsis of a violin. one can clone a viola. cello. and double bass to

< previous page page 208 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 208.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 209 Page 1 of 1
< previous page page 209 next page >
Page 209
! Source A Source B
I {speach) (orchestra)
? l Filtar l
coefllicients
LFC * LPC
analyzer .Fpliiu_d-é_h filter
“Talking
archestra®
Figure 5.40

LPC cross-synthesis takes the spectral envelope
from one sound and maps it onto another sound.

make up a string quartet (Lansky and Steiglitz 1981; Moorer 1981b, 1983a). These filter transformations can,
in theory, be extended to emulate any instrument's resonances. In Paul Lansky's music, this method called
warped linear prediction has been used to synthesize electronic versions of strings, saxophones, and
harmonicas (New Albion Records NA 030CD 1990).

Assessment of LPC

LPC speech is intelligible, and it is easy to recognize the origins of traditional instruments simulated with the
technique. However, LPC does not produce speech or music of extremely high audio quality. That is, the
synthetic replica remains distinguishable from the original. Although this does not prevent it from being
musically useful, an improvement in quality would be desirable in compositional applications. Moorer (1977,
1979a) experimented with high-order allpole filters and more complex excitation functions to try to improve
LPC quality. His conclusion is that the critical increment of sound quality is "not readily forthcoming." He
attributes this to a lack of effective tools for modeling the excitation function. See Depalle (1991) for a study of
alternatives to LPC spectrum modeling.

If the audio quality of the LPC model could be improved further, subtractive synthesis would have several
advantages over sine wave additive synthesis. For example, manipulations in the pitch, spectrum, and temporal
domains can be made independently in subtractive synthesis. In additive synthesis, spectrum is usually linked to
fundamental pitch. This means that if the pitch changes, the harmonics change frequency. Moreover, the LPC
model is not sensitive to the freauencv of the excitation function: it can

< previous page page 209 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 209.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 210 Page 1 of 1
< previous page page 210 next page >
Page 210

generate filters for inharmonic as well as harmonic spectra on top of the fundamental (Moorer 1977).
Diphone Analysis/Resynthesis

The concept of diphone synthesis was established decades ago in the context of speech research (Peterson
and Barney 1952; Peterson, Wang, and Silvertsen 1958; Olive 1977; Schwartz et al 1979). The basic idea is
that most speech sounds consist of a series of stable sounds separated by transition sounds. Although this
method managed to create intelligible speech, for example, there were distortions at points of concatenation.
The diphone concept was first tested in the context of a subtractive analysis/resynthesis strategy, which is why
we present it in this chapter. It has since been extended to other types of resynthesis.

By generalizing this concept from speech to the realm of musical sounds, one can build up dictionaries of stable
and transition sounds to cover a particular class of sounds, such as traditional instrument tones, for example.
Each diphone is coded as a pitch at a particular loudness. To alleviate the problem of distortions at diphone
boundaries, recent work has centered on developing a dictionary of transition rules for each instrument that
smooth the concatenation of adjacent diphones (Rodet, Depalle, and Poirot 1988; see also Depalle 1991).
Hence this research is related to the problem of creating convincing transitions between notes (Strawn 1985a,
1987a). But

Transition | 1! n 11| Transition | I N

Diphone 1 Diphone 2 Diphone 3

=
i

Figure 5.41
Transition over three diphones. The bold line indicates the trajectory
of a synthesis parameter for a sound that has been stretched in time.
The stretching projects from interpolation zones (I) defined in each
diphone and extends over a transition zone. The zones of
noninterpolation (N) are not stretched, preserving the central part of
the dinhone.

< previous page page 210 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 210.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 211 Page 1 of 1
< previous paqge page 211 next page >
Page 211

it also offers the possiblity of creating hybrid sounds that link diphones from different instruments. One can also
create synthetic diphones.

Individual tones are analyzed to create a dictionary; here we assume that the analysis method is LPC, running
at about 200 frames per second of input sound. If the data are stretched or compressed for musical effect,
discontinuities may occur in rapidly changing signals such as attacks and the transition between two notes. Thus
the diphone method recasts the analysis data for a rapid transition in a form that ensures continuous transitions,
even when the data are subjected to articulation and phrasing transformations. For example, the rule for
stretching or compressing a diphone may vary, depending on what diphone it is coming from and what diphone
it is going toward (Depalle 1991). Within each diphone is a zone of noninterpolation that is preserved intact
regardless of the transition (figure 5.41).

Conclusion

This chapter presented multiple wavetable, wave terrain, granular, and subtractive synthesis techniques.
Multiple wavetable synthesis is the central technique in many popular synthesizers. It enriches sampled sounds
by creating crossfaded and stacked hybrids. If desired, these blends can be combined with synthetic spectra to
create exotic, quasi-realistic sounds.

Wave terrain synthesis is computationally efficient and seems promising, but requires additional musical
development. Can it be adapted to scan sampled wavetables, for example, in musically effective ways?

Granular synthesis is a family of techniques based on the production of masses of short-duration sound
particles. Synchronous and quasi-synchronous granular synthesis generate pitched formant spectra, while
asynchronous methods can create more "particulated" sound effects, such as clouds of evolving sound spectra.
We can also granulate sampled sounds and create mélanges of grains from different samples for especially rich
textures.

Subtractive synthesis constitutes an established science with a long history. Yet digital filter design is still young,
so we can expect refinements in the years to come. Increasing computational power is rapidly bringing
applications like real-time filter banks and subtractive analysis/resynthesis into a favorable position.

Partly as a reaction to the complexity of additive and subtractive analysis/resynthesis, a variety of efficient and
snecialized techniaues have anneared. These techniaues have other advantages besides comnutational

< previous page page 211 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 211.html 5/23/2011

< previous paqge page 212 next paae >

Page 212

efficiency; they usually require less control information to be specified by the musician. They can be
implemented inexpensively in hardware as well as fabricated into tiny mass-produced integrated circuits. In
many cases the musical sounds produced by these techniques would be difficult to simulate and control using
"general" analysis/synthesis methods. Hence, they add to the palette of available sounds, which stands as a
tstification for their use in and of itself. Chanters 6 and 7 survev these methods.

page 212 next page >

< previous page page 213

6
Modulation Synthesis

Binolar and Uninolar Signals
Ring Modulation
Negative Freauencies
Avoplications of RM
Analog Ring Modulation and Freauency Shifting
Amplitude Modulation
AM Instruments
Modulation Index
Freauency Modulation
Backeround: Frequency Modulation
Freauencv Modulation and Phase Modulation
Simnle FM
C: M Ratio
Modulation Index and Bandwidth
Reflected Sidebands
The FM Formula
Bessel Functions
Digital Imnlementations of FM
Annlications of Simnle FM
Exnonential FM
Analvsis and FM

< previous page page 214 next paae >

Page 214

Multinle-Carrier FM
Musical Aoplications of MC FM
Multinle-Modulator FM
Parallel MM FM
Series MM FM
Musical Aoplications of MM FM
Feedback FM
Backeround: Feedback Oscillators
One-oscillator Feedback
Two-oscillator Feedback
Three-oscillator Indirect Feedback
Phase Distortion
Waveshaping Synthesis
Simnle Waveshaning Instrirment
Fxamnle Shaning Functions
Amnlitude Sensitivitv of Waveshaning Snectrum
Chehvchev Shaning Functions
Amnlitude Normalization
Variations on Waveshaning
Movable Waveshaning
Fractional Waveshaning
Postnrocessing and Parameter Estimation
General Modulations

Conchision

This version of Total HTML Converter is unregistered.

page 215 Page 1 of 1
< previous paqge page 215 next page >
Page 215

"Modulation" in electronic and computer music means that some aspect of one signal (the carrier) varies
according to an aspect of a second signal (the modulator). The familiar effects of tremolo (slow amplitude
variation) and vibrato (slow frequency variation) in traditional instruments and voices exemplify acoustic
modulation. The carrier in these cases is a pitched tone, and the modulator is a relatively slow-varying function
(less than 20 Hz). At the right moment and at the rlght speed, tremolo and vibrato charge both electronic and
acoustic tones with expressivity.

When the frequency of modulation rises into the audio bandwidth (above 20 Hz or so), audible modulation
products or sidebands begin to appear. These are new frequencies added to the spectrum of the carrier
(typically on either side of the carrier).

To achieve the same complexity of spectrum, modulation synthesis is more efficient in terms of parameter data,
memory requirements, and computation time than additive and subtractive synthesis. Modulation uses a small
number of oscillators (typically two to six), whereas additive and subtractive techniques need several times this
amount of computational power. Modulation is realized by a few table-lookup, multiplication, and addition
operations, depending on the type of modulation desired. Because there are fewer parameters than in additive
or subtractive techniques, musicians often find modulation techniques easier to manipulate.

By changing parameter values over time, modulation techniques easily produce time-varying spectra. Carefully
regulated modulations generate rich dynamic sounds that come close to natural instrumental tones. It is also
possible to use modulations in a nonimitative way to venture into the domain of unclassified synthetic sounds.

In this presentation of modulation, we use a minimum of mathematics combined with a liberal dose of
instrument diagrams or "patches." These diagrams depict synthesis instruments as a configuration of elementary
signal-processing unit generators. (See chapter 1 for an introduction to unit generators.)

The modulating signal can vary from a pure sinusoid at a fixed frequency to pure white noise containing all
frequencies. See chapter 8 for details on noise modulations.
Bipolar and Unipolar Signals

Two closely related synthesis methods are ring modulation and amplitude modulation (RM and AM,
respectively). In order to comprehend the difference between them, it is important to understand two types of
signals that

< previous page page 215 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 215.html 5/23/2011

< previous page page 216

ANVA
R W

S et

Figure 6.1
Bipolar versus unipolar sine waves. (a) Bipolar sine varies
between 1 and 1. (b) Unipolar sine varies between 0 and 1.

they process: bipolar and unipolar. A bipolar signal is typical of most audio waveforms, in that it has both a
negative and a positive excursion around zero when we look at it in the time domain (figure 6.1a). By contrast,
the excursions of a unipolar signal remain within one-half of the full range of the system (figure 6.1b). One way
to think of a unipolar signal is that it is a bipolar signal to which a constant has been added. This constant shifts
all the sample values to the range above zero. Another term for such a constant is direct current (DC) offseta
signal varying at a frequency of 0 Hz (i.e.. not varying).

This distinction is important because the fundamental difference between RM and AM is that RM modulates
two bipolar signals, while AM modulates a bipolar signal with a unipolar signal. The next two sections cover
both methods in more detail.

Ring Modulation

We start our discussion with RM. In theory, ring modulation is a form of amplitude modulation (Black 1953).
In digital systems, RM is simply the multiplication of two bipolar audio signals by one another. That is, a carrier

signal C is multiplied by a modulator signal M. The basic signals C and M are generated from stored
waveforms. and one of them is usuallv a sine

This version of Total HTML Converter is unregistered.

page 217 Page 1 of 1
< previous page page 217 next page >
Page 217

wave. The formula for determining the value of a simple ring-modulated signal RingMod at time ¢ is a
straightforward multiplication:

RingModt = Ct x Mt.

Figure 6.2 portrays two equivalent implementations of at RM instrument. In figure 6.2a it is assumed that the
carrier oscillator multiplies the value it reads from the wavetable lookup by the value it takes in from its
amplitude input. In figure 6.2b this multiplication is made more explicit. In both cases, the modulator and the
carrier vary between 1 and + 1, hence they are bipolar.

When the frequency of the modulator M is below 20 Hz or so, the effect of ring modulation is that the
amplitude of C varies at the frequency of Ma tremolo effect. But when the frequency of M is in the audible
range, the timbre of C changes. For each sinusoidal component in the carrier, the modulator contributes a pair
of sidebands to the final spectrum. Given two sine waves as input, RM generates a spectrum that contains two
sidebands. These sidebands are the sum and the difference of the frequencies C and M. Curiously, the carrier
frequency itself disappears. Furthermore, if C and M are in an integer ratio to one another, then the sidebands
generated by RM are harmonic; otherwise they are inharmonic.

The sidebands in signal multiplication derive from a standard trigonometric identity:
cos(C) x cos(M) = 0.5 x [cos(C M) + cos(C + M.

Yet another way to understand ring modulation is to consider it as a case of convolution, as explained in
chapter 10.

To give an example of RM, assume that C is a 1000 Hz sine wave and M is a 400 Hz sine wave. As figure 6.3
shows, their RM spectrum contains a components at 1400 Hz (the sum of C and M) and 600 Hz (the
difference between C and M).

The phases of the output signal components are also the sum and difference of the phases of the two inputs. If
C and M are more complex signals than sine waves, or if their frequency changes in time, the resulting output
spectrum contains many sum and difference frequencies. A spectral plot would show many lines, indicating a
complicated spectrum.

Negative Frequencies

As figure 6.3b shows, when the modulating frequency is higher than the carrier frequency, negative
frequencies occur, as in the case of C = 100 Hz and M =400 Hz, since C + M =500, while C M = 300.
In snectral

< previous page page 217 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 217.html 5/23/2011

< previous page next page >
Page 218

Maodulating
fragusncy

Amplitude l
10

:

AN
OSC \\/_

Ring-maodulated
autput

Carriar Madulating
frequency frequency

Amplitude
1.0

Ring-madulatad
autput

Figure 6.2
Two equivalent implementations of ring modulation or bipolar signal multiplication.
The box to the left of each oscillator is its waveform. The top left input of each
oscillator is the amplitude, and the top- right input is the frequency. (a) RM by
implicit multiplication within the carrier oscillator. (b) RM by explicit multiplication
of the carrier and the modulator sionals.

< previous page page 219

I
400 Hz

(M)
Frequency —s

Figure 6.3
Ring modulation spectra. (a) For a carrier of 1000 Hz and a
modulator of 400 Hz, the sum and difference frequencies are
1400 and 600 Hz, respectively. (b) For a carrier of 100 Hz and
a modulator of 400 Hz, the sum and difference frequencies
are 500 and 300 Hz. resnectivelv.

This version of Total HTML Converter is unregistered.

page 220 Page 1 of 1
< previous page page 220 next page >
Page 220

plots, a negative frequency can be shown as a line extending down from the x-axis. The change in sign merely
changes the sign of the phase of the signal. (When the sign changes, the waveform flips over the zero or x-
axis.) Phase becomes important when summing components of identical frequencies, since out-of-phase
components can attenuate or cancel in-phase components.

Applications of RM

Typical musical use of RM involves the modification of sampled carrier signals (i.e., the human voice, piano,
etc.) by sine wave modulators. Another strategy is to create pure synthetic sounds starting from sine waves in
either harmonic or inharmonic ratios. This is the approach taken by composer James Dashow in his pieces
such as Sequence Symbols (Dashow 1987).

Analog Ring Modulation and Frequency Shifting

Digital ring modulation relies on signal multiplication. In general, digital RM should always sound the same. In
contrast, various analog RM circuits have a different "character," depending on the exact circuit and
components used. This is because implementations of analog RM approximate pure multiplication with a four-
diode circuit arranged in a "ring" configuration. Depending on the type of diodes (silicon or germanium) these
circuits introduce extraneous frequencies (Bode 1967, 1984; Stockhausen 1968; Duesenberry 1990; Strange
1983; Wells 1981). For example, in an analog ring modulator based on silicon diodes, the diodes in the circuit
clip the carrier (turning it into a quasi-square wave) when it reaches the momentary level of the modulator. This
creates the effect of several sums and differences on odd harmonics of the carrier, of the form

C+M C M3C+M3C M. 5C+M.5C M.....

Figure 6.4 compares the signals emitted by multiplying RM and diodeclipping RM. Analog ring modulation
was used extensively in the electronic music studios of the 1950s, 1960s, and 1970s. The German composer
Karlheinz Stockhausen was especially fond of ring modulation; he used it in a number of pieces composed in
the 1960s, including Kontakte, Mikrophonie I and II, Telemusik, Hymnen, Prozession, and Kurzwellen
(Stockhausen 1968, 1971b).

A pioneer of musical ring modulation, the inventor Harald Bode also developed a variation on RM called
freauencv shiftino (Bode 1967. 1984:

< previous page page 220 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 220.html 5/23/2011

< previous page page 221

Figure 6.4
Two forms of ring modulation. (a)
Multiplication RM. (b) Diodeclipping or
"chopper" RM.

Bode and Moog 1972). A frequency shifter or Klangumwandler has separate outputs for the sum and
difference frequencies. Another term for this method is single-sideband modulation (Oppenheim and Willsky
1983).

Amplitude Modulation

Amplitude modulation is one of the oldest modulation techniques (Black 1953) and has been used extensively
in analog electronic music. As in RM, the amplitude of a carrier wave varies in accordance with a modulator
wave. The difference between the two techniques is that in AM the modulator is unipolar (the entire waveform
is above zero).

Perhaps the most mundane example of infraaudio AM occurs when superposing an envelope onto a sine
wave. The envelope, which is unipolar since it varies between 0 and 1, acts as a modulator. The sine wave,
which is bipolar since it varies between 1 and + 1, acts as a carrier. To apply an envelope to a signal is to
multiply the two waveforms C and M:

AmpModt = Ct x Mt
where AmpModt the value of an amplitude-modulated signal at time ¢. Figure 6.5 depicts the result.

Like RM, AM generates a pair of sidebands for every sinusoidal component in the carrier and the modulator.
The sidebands are separated from the carrier by a distance corresponding to the inverse of the period of the
modulator. The sonic difference between RM and AM is that the AM spectrum contains the carrier frequency
as well (figure 6.6). The amnlitude of the two

< previous page page 222 next paae >
Page 222

W

il

il
mil‘hk‘ m '

'I!' 1 .ﬁ ']"|'J|'!"!!”'"I§!'"I f!ﬂ'r..un
W

Timg —a=

Figure 6.5
Applying an envelope to a signal is a simple
case of infra-audio AM. The sine wave signal
in (@) is multiplied by the envelope signal in (b)
to produce the enveloped signal in (c).

1000 Hz

Fraguency ——=

Figure 6.6
Spectrum produced by AM of a 1KHz sine wave by a 400
Hz sine wave. The two sidebands are at sum and difference
frequencies around the carrier frequency. The amplitude of
the each of the sidebands is index/2.

< previous page page 223

N 1 1

Figure 6.7
Time-domain view of audio frequency AM. The 1 KHz sine wave
signal in (a) is modulated by the 40 Hz sine wave signal in (b) to
produced the amplitude modulated signal in (¢).

sidebands increases in proportion to the amount of modulation, but never exceeds half the level of the carrier.

Figure 6.7 shows a time-domain view of AM created by the modulation of two sine wave signals in the audio
band.

AM Instruments

To implement classic AM one restricts the modulator to a unipolar signalthe positive range between 0 and 1.
Figure 6.8a shows a simple instrument for AM where the modulator is a unipolar signal.

Modulation Index

A slightly more complicated instrument is needed to control the amount of modulation and the overall
amplitude envelope. Figure 6.8b depicts an AM instrument that controls the amount of modulation with an
envelope (top left of figure). This envelope functions as a modulation index, in the parlance of modulation
theory (more on this later). The instrument scales a bipolar modulation signal into a unipolar signal varying
between 0 and 1, and then adds this to an overall amplitude envelope over the duration of a sound event. The
following eauation describes the resulting AM waveform:

< previous page page 224 next page >
Page 224

Linipalar
signal
[0, 1]

Figure 6.8
Two implementations of AM. (a) A simple
instrument for AM where the modulating
signal is assumed to be unipolar. () A more
complicated instrument for AM with controls
for the amount of modulation and the overall
amplitude over the duration of the note event.
The box to the left of each oscillator is its
waveform. In the case of the envelope
oscillators (denoted by ENV OSC), the
frequency period is 1/note_duration. This
means that they read through their wavetable
once over the duration of a note event. The
Positive scaler module ensures that the
modulation input to the adder varies
between 0 and 0.5.

AmpMod = A_ % cos{C) + (I = 4.)/2 % cos(C + M)
+ (F x A)2 x cos(C — M)

where AmpMod is the amplitude-modulated signal, Ac is the amplitude of the carrier, / is the modulation index,
C is the carrier frequency, and M is the modulator frequency.

Frequency Modulation

Frequency modulation (FM) is a very well known digital synthesis method, due to its adoption by the
Yamaha corporation. However, FM is not one technique, but a family of methods that share the common
prooertv of wavetable lookup according to a nonlinear oscillating function.

< previous page page 225

& Tiduration
Modulation 10
index envelope

1

0

Madulation Maodulation

iy

index frequency

Tiduration

1.0
Bipolar
madulation
signal

Posilive scaler Owarall

amplitude
anvelope

Linipatar Unipaolar
signal signal
[, 0.5] (0, 0.8]

Positive Carrier
madulation fraquency

Al cutput

Figure 6.8 (b)

Background:
Frequency Modulation

Applications of FM in communications systems date back to the nineteenth century. The theory behind FM of
radioband frequencies (in the MHz range) was established early in the twentieth century (Carson 1922; van
der Pol 1930; Black 1953). These studies are worth reading today, particularly Black's book, which walks the
reader through a well-planned tour of the hills and dales of waveform modulation.

John Chowning at Stanford University was the first to explore systematically the musical potential of digital FM
svnthesis (Chowning 1973). Prior

next page >

This version of Total HTML Converter is unregistered.

page 226 Page 1 of 1
< previous page page 226 next page >
Page 226

to this, most digital sound had been produced by fixed-waveform, fixed-spectrum techniques. Time-varying
additive and subtractive synthesis were rare and costly from a computational standpoint. Since most digital
synthesis work had to be done on multiple-user computers, there was a strong incentive to develop more
efficient techniques, with the emphasis on time-varying spectra. This motivation was explained by Chowning as
follows:

In natural sounds the frequency components of the spectrum are dynamic, or time variant. The
energy of the components often evolves in complicated ways; in particular during the attack
and decay portions of the sound.

(Chowning 1973)

Hence, Chowning sought a way to generate synthetic sounds that had the animated spectra characteristic of
natural sounds. The breakthrough came when he was experimenting with extreme vibrato techniques, where
the vibrato becomes so fast it effects the timbre of the signal:

1 found that with two simple sinusoids I could generate a whole range of complex sounds which
done by other means demanded much more powerful and extensive tools. If you want to have a
sound that has, say 50 harmonics, you have to have 50 oscillators. And I was using two
oscillators to get something that was very similar.

(Chowning 1987)

After careful experiments to explore the potential of the technique, Chowning developed a patent on an
implementation of FM. In 1975 the Japanese firm Nippon Gakki (Yamaha) obtained a license to apply this
patent in their products. After several years of development and extensions to the basic technique (described
later), Yahama introduced the expensive GS1 digital synthesizer ($16,000, housed in a wooden pianolike
case) in 1980. But it was the introduction of the highly successful DX7 synthesizer ($2000) in the fall of 1983
that made FM synonymous with digital synthesis to hundreds of thousands of musicians.

Frequency Modulation and Phase Modulation

FM and the closely related technique called phase modulation (PM) represent two virtually identical cases of
the same type of angle modulation (Black 1953, pp. 28 30). The amplitudes of the partials generated by the
two methods exhibit slight differences, but in musical practice there is no great distinction between PM and
FM, particularly in the case of time-varying spectra. Hence we will not discuss PM further in this book. (A
variation called phase distortion is discussed later in this chapter, however.) For details on the distinction
between PM and FM. see Bate (1990). Holm (1992). and Beauchamn (1992).

< previous page page 226 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 226.html 5/23/2011

< previous page page 227 next paae >

Page 227
Simple FM

In the basic frequency modulation technique (referred to as simple FM or Chowning FM), a carrier oscillator
is modulated in frequency by a modulator oscillator (Chowning 1973, 1975). Figure 6.9 diagrams a simple
FM instrument. (A slight discrepancy exists between the amplitudes of the spectrum components emitted by
the instrument shown in figure 6.9 and the spectra described by the classic FM formula, presented in a
moment. Overall these differences are minor. For a summary see Holm 1992 and Beauchamp 1992.)

Looking at the spectrum shown in figure 6.10 we can immediately see the difference between FM and the RM
and AM methods presented earlier. Instead of just one sum and one difference sideband, FM of two sinusoids
generates an series of sidebands around a carrier frequency C. Each sideband spreads out at a distance equal
to a multiple of the modulating frequency M. Later we investigate the number of sidebands; suffice it to say

Madulating
frequency

Amplitude of
modulator

Carrier
fraguency

Amplitude
of carrier

o5C
CAR

FM output signal

Figure 6.9
A simple FM instrument. The bipolar output of the
modulating oscillator is added to the fundamental carrier
frequency, causing it to vary up and down. The amplitude
of the modulator determines the amount of modulation, or
the frequency deviation from the fundamental carrier
freauencv.

< previous page page 228

Figure 6.10
FM spectrum showing sidebands equally spaced around the carrier C at multiples of
the modulator M.

now that the number of sidebands generated depends on the amount of modulation applied to the carrier.
C:M Ratio

The position of the frequency components generated by FM depends on the ratio of the carrier frequency to
the modulating frequency. This is called the C:M ratio. When C:M is a simple integer ratio, such as 4:1 (as in
the case of two signals at 800 and 200 Hz), FM generates harmonic spectra, that is, sidebands that are integer
multiples of the carrier and modulating frequencies:

C=800Hz (carrier)
C+ M=1000 Hz (sum)
C+(2xM=1200Hz (sum)

C+ (3 x M) = 1400 Hz, etc. (sum)

C M=600Hz (difference)
C 2xM)=400Hz (difference)
C (3 x M)=200 Hz. etc. (difference)

page 228

This version of Total HTML Converter is unregistered.

page 229 Page 1 of 1
< previous padge page 229 next page >
Page 229

When C:M is not a simple integer ratio, such as 8:2.1 (as in the case of two signals at 800 and 210 Hz), FM
generates inharmonic spectra (noninteger multiples of the carrier and modulator):

C=800Hz (carrier)
C+M=1010Hz (sum)
C+2xM)=1120Hz (sum)

C+ (3 x M)=1230 Hz, etc. (sum)

C M=590Hz (difference)
C (2xM)=380Hz (difference)
C (3 xM)=170Hz, etc. (difference)

Modulation Index and Bandwidth

The bandwidth of the FM spectrum (the number of sidebands) is controlled by the modulation index or
index of modulation I. I is defined mathematically according to the following relation:

I=DIM

where D is the amount of frequency deviation (in Hz) from the carrier frequency. Hence, D is a way of
expressing the depth or amount of the modulation. So if D is 100 Hz and the modulator M is 100 Hz, then the
index of modulation is 1.0.

Figure 6.11 plots the effects of increasing the modulation index. When 7 = 0 (figure 6.11a) the frequency
deviation is zero so there is no modulation. When [/ is greater than zero, sideband frequencies occur above and
below the carrier C at intervals of the modulator M. As / increases, so does the number of sidebands. Notice
in that as / increases, energy is "stolen" from the carrier and distributed among the increasing number of
sidebands.

As a rule of thumb, the number of significant sideband pairs (those that are more than 1/100th the amplitude of
the carrier) is approximately / + 1 (De Poli 1983). The total bandwidth is approximately equal to twice the
sum of the frequency deviation D and the modulating frequency M (Chowning 1973). In formal terms:

FM bandwidth ~ 2 x (D + M).

Because the bandwidth increases as the index of moduation increases, FM can simulate an important property
of instrumental tones. Namelv. as the

< previous page page 229 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 229.html 5/23/2011

< previous page page 230 next paae >

Page 230

Figure 6.11
FM spectrum with increasing modulation index. («) Carrier.
(b) (e) Carrier plus sidebands for / = 0 (see a) to 4 (see e).
The sidebands are spaced at intervals of the modulating
frequency M and are symmetrical about the carrier C.
(After Chowning 1973.)

amplitude increases, so does the bandwidth. This is typical of many instruments, such as strings, horns, and
drums, and is realized in FM by using similar envelope shapes for both the carrier amplitude and index of
modulation.

Reflected Sidebands

For certain values of the carrier and modulator frequencies and 7, extreme sidebands reflect out of the upper
and lower ends of the spectrum, causing audible side effects. An upper partial that is beyond the Nyquist
frequency (half the sampling rate) "folds over" (aliases) and reflects back into the lower portion of the
spectrum. (Chapter 1 describes foldover in more detail.)

When the lower sidebands extend below 0 Hz, they reflect back into the spectrum in 180-degree phase-
inverted form. By "phase inverted" we mean that the waveform flips over the x-axis, so that the positive part
of a sine wave hecomes negative and the negative nart becomes nositive. Phase-

next page >

< previous page page 231

1t 200 300 400 500 800 VOO

Frequancy ——=

Figure 6.12
Spectral plot showing the effects of reflected low- frequency

sidebands. The C:M ratio is '~'2 and the modulation index

is 5. The downward lines indicate phase-inverted reflected
components.
(After Chowning 1973.)

inverted partials are drawn as lines extending downward, as in figure 6.12. In general, negative frequency
components add richness to the lower-frequency portion of the spectrum, but if negative components overlap
exactly with positive components. they can cancel out each other.

The FM Formula

When the carrier and the modulator are both sine waves, the formula for a frequency modulated signal FM at
time # is as follows:

FMt = A x sin(Ct + [I x sin(Mt)])

where A is the peak amplitude of the carrier, Ct =2 x C, Mt =2 x M, and I is the index of modulation. As
this formula shows, simple FM is quite efficient, requiring just two multiplies, an add, and two table lookups.
The table lookups reference sine waves stored in memory.

Bessel Functions

The amplitudes of the individual sideband components vary according to a class of mathematical functions
called Bessel functions of the first kind and the nth order Jn(I), where the argument to the function is the
modulation index /. The FM equation just given can be reexpressed in an equivalent representation (adapted
from De Poli 1983) that incornorates the Bessel function terms directlv:

next page >

This version of Total HTML Converter is unregistered.

page 232 Page 1 of 1
< previous page page 232 next page >
Page 232

FM,= Y J(D) sin@n x [f, {n x fu}]}t

n=—un

Each 7 is an individual partial. So to calculate the amplitude of, say, the third partial, we multiply the third
Bessel function at point /, that is, J3 (/), times two sine waves on either side of the carrier frequency. Odd-
order lower-side frequency components are phase inverted.

Figure 6.13 depicts the Bessel functions in a three-dimensional representation for » = 1 to 15, with a
modulation index range of 0 to 20. The vertical plane (an undulating surface) shows how the amplitudes of the
sidebands vary as the modulation index changes. The figure shows that when the number of sidebands is low
(at the "back" of the display) the amplitude variation is quite striking. As the number of sidebands increases
(shown toward the "front" of the display), the amplitude variations in them (ripples) are small.

From a musical standpoint, the important property is that each Bessel function undulates like a kind of damped
sinusoidwide variations for low 7/ and less variation for high /. Simple FM is audibly marked by this indulation
as one sweeps the modulation index. Notice also that the Jn (/) for different values of n cross zero at different
values of 1. So as the modulation index / sweeps, sidebands drop in and out in a quasi-random fashion.

A convenient feature of FM is that the maximum amplitude and signal power do not have to vary with /. This
means that as / increases or decreases, the overall amplitude of the tone does not vary wildly. Musically, this
means that one can manipulate the amplitude and the index independently by using separate envelopes without
worrying about how the value of 7 will affect the overall amplitude. As we see later in this chapter, this is not
the case with some other synthesis techniques, notably waveshaping and the discrete summation formulas.
These techniques require amplitude normalization since the modulation can drastically affect the output
amplitude.

Digital Implementation of FM

Figure 6.9 showed a simple FM instrument in which the depth of modulation is controlled by a constant
frequency deviation. But since the bandwidth is directly related to the modulation index and only indirectly to
the frequency deviation, it is usually more convenient to specify an FM sound directly in terms of a modulation
index. In this case, the instrument needs to be modified to carry out additional calculation according to the
following relation:

D=1xM.

< previous page page 232 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 232.html 5/23/2011

This version of Total HTML Converter is unregistered.
page 233 Page 1 of 1

< previous page page 233 next paage >

Ampliiude of
side fraquencies

f
(AW,
Murnbar of 5 2 /
cida freguencies 4
.. o)
& =
L} ’ f =
| l"\, b
a o e =~ B
10 A1
11 3
12
13
~ >

Wt 8 A
b i

Modulatian c
index

Figure 6.13
Three-dimensional graph of the Bessel functions 1 to 15 plotted (plotted back to front) as a function of modulatiot
(plotted from left to right) showing the number of sidebands generated (after Chowning 1973). Lines A, B, and C
points at which the amplitude falls off by 40, 60, and 80 dB, respectively. Line D indicates the cutoff point
"perceptually significant" sidebands. E is the maximum amplitude for each order. Lines F through K show the zero
of the functions and. therefore. values of the index that nroduce a null or zero amnlitude for various side freaue

page 233 next page >

< previous page
5/23/2011

C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 233.html

< previous page page 234 next paae >

Page 234

tModulation 1/duration
index envelope 1.0

1

hodulating
o frequency A

fodulation
index |

Madulation
Deviaticn O wavefonm

/“"-\

1/duration

Carrier Carrier
emelope 1.0 fraguency

1 /\ﬁ !va |_|_

Q580

Carrier
waveform

% /\\J

Cutput

Figure 6.14
Simple FM instrument with envelopes for amplitude and frequency.
This instrument also translates a user- specified modulation index
envelope into a frequency deviation parameter.

A musician usually wants dynamic control of the overall amplitude as well as the modulation index. Figure 6.14
provides these envelopes. In Chowning's original paper (1973) he described a variation of this instrument with
a modulation index that varies between two values // and /2 according to an envelope. (see Maillard 1976 for
another implementation.)

Applications of Simple FM

A straightforward application of simple FM is generating brasslike tones. This family of sounds have a sharp

attack on both the amplitude and index envelopes, and maintain a C: M ratio of 1. The modulation index should
varv between 0 and 7.

This version of Total HTML Converter is unregistered.

page 235 Page 1 of 1
< previous page page 235 next paage >
Page 235
When the C:M ratio is 1:2, odd harmonics are generated, making possible a crude clarinet simulation. An
irrational C:M ratio like
' uf'liﬁ_lf

yields an inharmonic complex that can simulate percussive and bell-like sounds (Moorer 1977).

Besides simulations of instrumental tones, another way to compose with FM is to take advantage of its
"unnatural" properties and the uniquely synthetic spectra it generates. This is the approach taken by composers
James Dashow and Barry Truax. Dashow uses FM to "harmonize" (in an extended sense of the word
"harmony") pitch dyads (Dashow 1980, 1987; Roads 1985c¢). Truax systematically mapped out the spectral
"families" made possible by various C:M ratios (Truax 1977). For example, certain C:M ratios generate
harmonic spectra, while others generate combinations of harmonic and inharmonic spectra. Each C:M ratio is
a member of a family of ratios that produce the same spectrum and which vary only in the position of the
carrier around which spectral energy is centered. By carefully choosing carrier and modulating frequencies a
composer can generate a progression of related timbres with the same set of sidebands.

Another approach to composition with FM is to set a constant C or M and generate a set of related timbres
with different C: M ratios.

Exponential FM

In the usual digital implementation of FM, the sidebands are equally spaced around the carrier frequency. We
call this /inear FM. In FM on some analog synthesizers, however, the spacing of sidebands is asymmetrical
around the carrier, creating a different type of sound altogether. We call this exponential FM. This section
explains the difference between these two implementations of FM.

Most analog synthesizers let a voltage-controlled oscillator (VCO) be frequency modulated by another
oscillator. However, in order to allow equal-tempered keyboard control of the VCO, the VCO responds to a
given voltage in a frequency-dependent way. In particular, a typical VCO responds to a one-volt-per-octave
protocol, corresponding to the voltage/octave protocol of analog keyboards. In such a system, for example,
the pitch A880 Hz is obtained by applying one more volt to the control input of the VCO than that needed to
obtain A440.

In the case of FM, a modulating signal that varies between 1 volt and + 1 volt causes a carrier oscillator set to
A440 to varv between A220 and

< previous page page 235 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 235.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 236 Page 1 of 1
< previous page page 236 next paage >
Page 236

A880. This means that it modulates 220 Hz downward but 440 Hz upwardan asymmetrical modulation. The
average center frequency of the carrier changes, which usually means that the perceived center pitch is detuned
by a significant interval. This detuning is caused by the modulation index, which means that the bandwidth and
the center frequency are linked. From a musical standpoint, this linkage is not ideal. We want to be able to
increase the modulation index without shifting the center frequency. See Hutchins (1975) for an analysis of
exponential FM.

In digital modulation the sidebands are spaced equally around the carrier; hence the term /inear FM. As the
modulation index increases, the center frequency remains the same. All digital FM is linear, and at least one
manufacturer, Serge Modular, makes a linear FM analog oscillator module.

Analysis and FM

Since FM techniques can create many different families of spectra, it might be useful to have an
analysis/resynthesis procedure linked to FM, similar to those used with additive and subtractive techniques.
Such a procedure could take an existing sound and translate it into parameter values for an FM instrument. By
plugging those values into the instrument, we could hear an approximation of that sound via FM synthesis. The
general name for this type of procedure is parameter estimation (see chapter 13). Various attempts have
been made to try to approximate a given steady-state spectrum automatically using FM (Justice 1979; Risberg
1982). The problem of estimating the FM parameters for complex evolving sounds is difficult (Kronland-
Martinet and Grossmann 1991; Horner, Beauchamp. and Haken 1992).

As the power of digital hardware has increased, some of the motivation for estimating FM parameters has
diminished. FM synthesis was originally proposed as a computationally efficient method, but now more
powerful synthesis methods (such as additive synthesis) are no longer so difficult. Only a certain class of
sounds are well modeled as modulations. Additive synthesis and physical models (see chapter 7) may be more
appropriate models of traditional instruments.

Multiple-Carrier FM

By multiple-carrier frequency modulation (MC FM), we mean an FM instrument in which one oscillator
simultaneously modulates two or more carrier oscillators. The output of the carriers sum to a composite
waveform that

< previous page page 236 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 236.html ~ 5/23/2011

< previous page page 237

Carrier 1
fundamental

Carrier 2
Carrigr 3

Frequency —=

Figure 6.15
A spectrum with three formant regions created with a three-
carrier FM instrument.

superposes the modulated spectra. Multiple carriers can create formant regions (peaks) in the spectrum, as
shown in figure 6.15. The presence of formant regions is characteristic of the spectrum of the human voice and
most traditional instruments. Another justification for separate carrier systems is to set different decay times for
each formant region. This is useful in simulating brasslike tones where the upper partials decay more rapidly
than the lower partials.

Figure 6.16 shows a triple-carrier FM instrument. In order to indicate clearly the multiple-carrier structure, the
figure omits envelope controls and waveform tables. The amplitudes of the carriers are independent. When the
Carrier 2 and Carrier 3 amplitudes are some fraction of Carrier 1, the instrument generates formant regions
around the frequencies of the second and third carriers.

The equation for a multiple-carrier FM waveform at time ¢ is simply the addition of 7 simple FM equations:
MCFM, = 4"' x sin(CI, + [/ x sin(M)]) ...

1 AW Sif.ll:c-‘ﬂg + [I}‘J‘ o Siﬂ{M}D

where A is an amplitude constant, 0 <4 1.0,

w1 is the weighting of Carrier 1,

wn is the weighting of Carrier n,

C1 is the fundamental pitch=2 X carrier frequency 1 (in Hz),

Cn is the formant frequency =2 x carrier frequency # (in Hz), where Cn is an integer multiple of C/,
M is modulating freauencv. usuallv set to be eaual to C/ (Chowning 1989).

< previous page page 238 next paae >

Page 238

Meodulating
frequency
Fraquency
deviation

Q5o
Moo

Carrier 1 Carriar 2 Carrier 3
frequency frequency frequency

Multiple-carriar Fi outpul

Figure 6.16
Triple-carrier FM instrument driven by a single
modulating oscillator (OSC MOD).

11 is the modulation index of C1
In 1s the modulation index of Cn

The exponents w/ and wn determine how the relative contribution of the carriers vary with the overall
amplitude 4.

Musical Applications of MC FM

Documented applications of MC FM strive to simulate the sounds of traditional instrument tones. With MC
FMor any synthesis technique, for that matterthe secret of realistic simulation is attention to detail in all aspects
of the soundamplitude, frequency, spectral envelopes, vibrato, and musical context.

A straightforward application of MC FM is in the synthesis of trumpet-like tones. Risset and Mathews's
(1969) analvsis of trumnet-like tones

This version of Total HTML Converter is unregistered.

page 239 Page 1 of 1
< previous page page 239 next paage >
Page 239

showed a nearly harmonic spectrum, a 20 25 ms rise time of the amplitude envelope (with high partials building
up more slowly), a small quasi-random frequency fluctuation, and a formant peak in the region of 1500 Hz.
Morrill (1977) developed both single-carrier and double-carrier FM instruments for brass tone synthesis
based on these data. A double-carrier instrument sounds more realistic, since each carrier produces
frequencies for different parts of the spectrum. In particular, C/ generates the fundamental and the first five to
seven partials, while C2 1s set at 1500 Hz, the main formant region of the trumpet. Each carrier has its own
amplitude envelope for adjusting the balance between the two carrier systems in the composite spectrum. For
example, in loud trumpet tones, the upper partials standout.

Chowning (1980, 1989) applied the MC FM technique to the synthesis of vowel sounds sung by a soprano
and by a low bass voice. He determined that a combination of periodic and random vibrato must be applied to
all frequency parameters for realistic simulation of the vocal tones. "Without vibrato the synthesized tones are
unnatural sounding" (Chowning 1989, p. 62). A quasi-periodic vibrato makes the frequencies "fuse" into a
vocal-like tone. In Chowning's simulations, the vibrato percent deviation V is defined by the relation

V'=0.2 x log(pitch).

Hence for a pitch of 440 Hz, V' is about 1.2 percent or 5.3 Hz in depth. The frequency of the vibrato ranges
from 5.0 to 6.5 Hz according to the fundamental frequency range of the pitches F3 to F6.
Multiple-Modulator FM

In multiple-modulator frequency modulation (MM FM) more than one oscillator modulates a single carrier
oscillator. Two basic configurations are possible: parallel and series (figure 6.17). MM FM is easiest to
understand when the number of modulators is limited to two and their waveforms are sinusoidal.

Parallel MM FM

In parallel MM FM, two sine waves simultaneously modulate a single carrier sine wave. The modulation
generates sidebands at frequencies of the form:

CE(ix MN+x(kx M)

< previous page page 239 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 239.html 5/23/2011

< previous page page 240 next paae >

Page 240

hod. 1 Med. 2 Mad. 1
e 4 frequency Mad. 2 frequency frequency

z 3 Mod. 1
amplitude amplitude amplituda

Meod, 2
centar
fraquansy

Carricr amplitude
frequency

Carrier
cenler
Traquancy
Carrier
amplitude
Carrier i

amplitude

Parallzl MK FM autput

Senes MM FM output

{b)

Figure 6.17
MM FM instruments. (a) Parallel MM FM. (b) Series MM FM.

where i and £ are integers and M/ and M2 are the modulating frequencies. In parallel MM FM, it is as though
each of the sidebands produced by one of the modulators is modulated as a carrier by the other modulator.
The explosion in the number of partials is clear in figure 6.18, which lists both the primary and secondary
modulation products.

The wave equation of the parallel double-modulator FM signal at time 7 is as follows:
PMMEMt = A x sm{Ct + [I] x sin(MI)] + [12 x sin(M21)]}.

For mathematical descriptions of the spectra produced by this class of techniques, see Schottstaedt (1977)
and LeBrun (1977).

page 240

< previous page page 241 next paae >

Page 241

Modulator 1 Modulator 2
100 Hz 30 Hz

Figure 6.18
This diagram depicts the explosion in the number of partials produced by parallel MM FM. Each of the
components emitted by the modulation of the Carrier by Modulator 1 is then modulated by Modulator
2. producing the list of spectral components shown at the bottom.

Series MM FM

In series MM FM the modulating sine wave M1 is itself modulated by M2. This creates a complicated
modulating wave with a potentially immense number of sinusoidal sideband components, depending on the
index of modulation. The instantaneous amplitude of series double-modulator FM is given in the following
equation, adapted from Schottstaedt (1977):

SMMFMt = A x sin {Ct + [11 x sin(M1t + [12 x sin(M2£)])]}.

The differences between the parallel and serial equations reflects the configuration of the oscillators. In
practice, /2 determines the number of significant sidebands in the modulating signal and /7 determines the
number of sidebands in the output signal. Even small values of /7 and 12 create complex waveforms. The ratio
M :C determines the nlacement of the carrier's

This version of Total HTML Converter is unregistered.

page 242 Page 1 of 1
< previous paqge page 242 next page >
Page 242

sidebands, each of which has sidebands of its own at intervals determined by M2:M1. Hence, each sideband
is modulated and is also a modulator.

Musical Applications of MM FM

Schottstaedt (1977) used double-modulator FM to simulate certain characteristics of piano tones. He set the
first modulator to approximately the carrier frequency, and the second modulator to approximately four times
the carrier frequency. According to Schottstaedt, if the carrier and the first modulator are exactly equal, the
purely harmonic result sounds artificial, like the sound of an electric (amplified tuning bar) piano. This need for
inharmonicity in piano tones agrees with the findings of acousticians (Blackham 1965; Backus 1977).

Schottstaedt made the amplitudes of the modulating indexes frequency-dependent. That is, as the carrier
frequency increases, the modulation index decreases. The result is a spectrum that is rich in the lower register
but becomes steadily simpler as the pitch rises. Since the length of decay of a piano tone also varies with pitch
(low tones decay longer), he used a pitch-dependent decay time.

Chowning and Schottstaedt also worked on the simulation of stringlike tones using triple-modulator FM,
where the C:M1:M?2 ratio was 1:3:4, and the modulation indexes were frequency dependent (Schottstaedt
1977). Chowning also developed a deep bass voice using a combination MC FM and MM FM instrument.
See Chowning (1980, 1989) for more details on this instrument.

Feedback FM

Feedback FM is a widely used synthesis technique, due to Yamaha's patented application of the method in its
digital synthesizers (Tomisawa 1981). In this section we describe three types of feedback FM: one-oscillator
feedback, two-oscillator feedback, and three-oscillator indirect feedback.

Feedback FM solves certain problems associated with simple (nonfeedback) FM methods. When the
modulation index increases in simple FM, the amplitude of the partials vary unevenly, moving up and down
according to the Bessel functions (figure 6.19). This undulation in the amplitude of the partials lends an
unnatural "electronic sound" characteristic to the simple FM spectrum; it makes simulations of traditional
instruments more difficult.

< previous page page 242 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 242.html 5/23/2011

< previous page page 243

Figure 6.19
A plot of the harmonic spectrum of FM when the frequency of C is equal to that
of M, for values of I ranging from 0 to 22 (after Mitsuhashi 1982b). Read the graphs
starting from the top left, then top right, then go down a row to the left, then right,
etc. Note how uneven the spectrum is, with partials going up and then down as the
modulation index changes.

next page >

This version of Total HTML Converter is unregistered.

page_244 Page 1 of 1
< previous page page 244 next paae >
Page 244
Ig) E! (h a
|
1=12 I =14
-20 -20
-4 uo
=f0 ! T T T T =60 I S T T
1 10 20 an un 1 | 20 an un
iy o m o
i | =16 B =18
-4g 40 Hi
-E0 — r r =60 L ; .
10 20 30 4o 10 20 30 yg
{ky 0 M o
| = 20 =22 |
-20 -20 |
-4 -40
I | !
=60 T T —EIJ T T i
10 20 an 4o 10 20 an uo

Figure 6.19 (cont.)

Feedback FM makes the spectrum more linear in its evolution. Generally, in feedback FM, as the modulation
index increases, the number of partials and their amplitude increases relatively linearly.

Background.:
Feedback Oscillators

A feedback oscillator instrument first appeared in Jean-Claude Risset's Introductory Catalog of Computer
Generated Sounds in 1969. Since this catalog was not publicly distributed, the technique first appeared in
nublic in an ohscure naner with the crvntic title "Some idiosvncratic asnects of com-

< previous page page 244 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 244.html 5/23/2011

< previous page page 245 next paae >

Page 245

puter synthesized sound" (Layzer 1971). In it, Arthur Layzer described work at Bell Telephone Laboratories
in developing a self-modulating oscillator whose output is fed back to its input. This work was a collaboration
with Risset, Max Mathews, and F. R. Moore. Moore implemented a feedback oscillator as a unit generator in
the Music V language. (Music V is described in Mathews et al. 1969.)

The essential difference between the feedback oscillators developed at Bell Laboratories and the Yamaha
feedback FM technique is that the former fed the signal back into the amplitude input, while the latter feeds the
signal back into the frequency or phase increment input. Hence the early feedback oscillators were
immplementing a form of "feedback AM" rather than feedback FM.

One-oscillator Feedback

The basic idea of one-oscillator feedback FM is easy to describe. Figure 6.20 shows an oscillator that feeds
its output back into its frequency input through a multiplier and an adder. The adder computes the phase index

Modulation
index
po—-

Frequency B = sin(y)

Figure 6.20
Feedback FM instrument. x is a phase
increment to a sine wave lookup table.
x is added with a signal fed back from
the outnut. multinlied a feedback factor

This version of Total HTML Converter is unregistered.

page 246 Page 1 of 1
< previous page page 246 next page >
Page 246

for the sine table-lookup operation within the oscillator. At each sample period, a value x (the frequency
increment) is added to the existing phase. The value in the sine table at this new phase is the output signal sin
(v). In a synthesizer, x is usually obtained by pressing a key on a musical keyboard. This keystroke translates
into a large phase increment value for a high-pitched note or a small phase increment value for a low-pitched
note.

In feedback FM, the output signal sin(y) routes back to the adder after being multiplied by the feedback
factor . The factor acts as a kind of scaling function or "modulation index" for the feedback. With the
feedback loop the address of the next sample isx + [x sin(y)].

Figure 6.21 plots the spectrum of a one-oscillator feedback FM instrument as increases. Notice the increase
in the number of partials, and the regular, incremental differences in amplitude between the partials, all
contributing to a quasi-linear spectral buildup. With increasing modulation, the signal evolves from a sine wave
to a sawtooth wave in a continuous manner.

The equation for one-oscillator feedback FM can be characterized by reference to the Bessel functions
(Tomisawa 1981):

FFM,=£ e

x Sl =) % sin(n = X

where Jn(n) is a Bessel function of order » and n X is the modulation index. The Bessel functions act in
different ways in feedback FM as opposed to simple FM. In simple FM, the modulation index / is common for
each Bessel component Jn(/). This means that each Bessel function value Jn(n) is represented by a height at a
position where the common modulation index crosses. Accordingly, as the modulation index in regular FM
increases, the spectral envelope assumes an undulating character. In feedback FM, the order n of the Bessel
function Jn(n %) is included in the modulation index, and the factor 2/(n x) is multiplied as a coefficient to
the Bessel equation (Mitsuhashi 1982a).

In feedback FM, the modulation index n x differs for each order n and increases approximately in the
manner of a monotone function (i.e., the increase is by a constant factor). The scaling coefficient 2/n x
ensures that as the order n of partials increases, their amplitude decreases.

Two-oscillator Feedback

Another feedback FM patch takes the output of a feedback oscillator and uses it to modulate another
oscillator (figure 6.22). The multiplier M in the figure functions as the index of modulation control between the
two oscillators.

< previous page page 246 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 246.html 5/23/2011

< previous page page 247 next paage >

Page 247

Figure 6.21
Spectrum of a one-oscillator feedback FM instrument as the feedback factor —increases,
with the phase increment x set at 200 Hz. The horizontal axis shows frequency plotted
from 0 to 10 KHz. The vertical axis shows amnlitude on a scale from 0 to 60 dB.

< previous page

hodulator
frequency x7

frequency

Carrier
amplitude

Figure 6.22
Two-oscillator feedback FM instrument.
The output of a feedback FM oscillator
modulates a second, nonfeedback
oscillator.

page 248

< previous page page 249 next page >
Page 249

I

[=0.8340

B =0.3927

B = 0.5554

Figure 6.23
Spectrum generated by a two-oscillator feedback FM instrument as the feedback
factor increases from 0.0982 to 1.571. The frequency values for x/ and x2 are both
set at 200 Hz, and the modulation index M is set to the constant value 2. The
horizontal axis shows frequency plotted from 0 to 10 KHz. The vertical axis shows
amplitude on a scale from 0 to 60 dB.

next page >

This version of Total HTML Converter is unregistered.

page 250 Page 1 of 1
< previous page page 250 next paage >
Page 250

When M is in the range of 0.5 to 2, the spectrum has a monotonically decreasing tendency in which the
amplitude of the partials decreases as the number of partials increases (figure 6.23). When the feedback
parameter is greater than 1, the overall amplitude of the high-order partials increases. This creates the effect
of a variable filter. It thus has a more strident and shrill sound. However, when M is set to 1 and x/ and x2 are
equal, this instrument generates the same spectrum as the single-oscillator feedback FM instrument shown in
figure 6.20.

When the ratio between x2 (the carrier) and x/ (the modulator) is 2:1, the modulation index M is 1, and
varies between 0.09 and 1.571, the result is a continuous variation between a quasi-sine wave and a quasi-
square wave.

Three-oscillator Indirect Feedback

Another variation on feedback FM in a three-oscillator technique with indirect feedback, shown in figure
6.24. The feedback parameter is /. Indirect feedback produces a complex form of modulation. When the
frequencies x/, x2, and x3 are noninteger multiples, nonpitched sounds are created. A beating chorus effect is
produced when these frequencies are very close to being in an integer relationship. According to sound
designer David Bristow (personal communication 1986) this instrument generates a rich spectrum, and when
the feedback is increased the energy tends to focus at the high end of the spectrum.

Phase Distortion

Phase distortion (PD) synthesis is a term invented by the Casio corporation to describe a simple modulation
technique developed for several of its digital synthesizers. PD synthesis uses a sine wave table-lookup
oscillator in which the rate of scanning through the oscillator varies over the cycle. The scanning interval speeds
up from 0 to and then slows down from to 2 . The overall frequency is constant, according to the pitch of
the note, but the output waveform is no longer a sine. Figure 6.25 illustrates the effect of the bent (sped up and
then slowed down) scanning function on the output waveform.

As the amount of speeding up and slowing down increases (bending the scanning function progressively), the
original sinusoidal waveform turns into a kind of triangle wave, and finally into a quasi-sawtooth waveform that
is rich in harmonics.

< previous page page 250 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 250.html 5/23/2011

< previous padge

page 251

B

Frequency x7

Figure 6.24
Three-oscillator indirect feedback FM instrument. A
series of three oscillators modulate each other. Three
modulation index factors /, 2,and 3 determine the
amount of modulation. The global output is fed back
into the first modulatine oscillator.

next page >
Page 251

< previous page page 252

Phase angla ' “ Phase angle

r

/\ /\ Wavefarm) . X Wa‘u‘alnnﬂF
7/ "\ I

Tirne

o ————

-_

Figure 6.25
Waveforms in Casio phase distortion synthesis. The audio waveform changes by varying the rate at which a
sine lookup table is read out. (@) A constant rate of readout generates a sine wave. (b) A readout whose rate
changes twice per cycle, distorting the sine wave into a quasi-sawtooth waveform.

Waveshaping Synthesis

Jean-Claude Risset, working at the Bell Telephone Laboratories in New Jersey, carried out the first
experiments with the method now known as waveshaping synthesis (Risset 1969). Daniel Arfib (1979) and
Marc LeBrun (1979) independently developed theoretical and empirical elaborations of the basic method.
Waveshaping is musically interesting because, as in FM synthesis, it gives us a simple handle on the time-
varying bandwidth and spectrum of a tone in a computationally efficient way.

The fundamental idea behind waveshaping (also known as nonlinear distortion) is to pass a sound signal x
through a "distortion box." In digital form, the distortion box is a function in a stored table (or array) in
computer memory. The function w maps any input value x in the range [1, + 1] to an output value w(x) in the
same range.

In the simplest case, x a sinusoidal wave generated by an oscillator. However, x can be any signal, not just a
sinusoid. For each output sample to be computed we use the value of x to index table w. Table w contains the
shaping function (also called the transfer function). We then simply take the value in w indexed by x as our
outout value w(x).

Dage 252

< previous page page 253 next paage >

Page 253

1fdurafion

Amplitude

Shaping
functicn
W

Wicx)
Waveshaped
output signal

Figure 6.26
Simple waveshaping instrument. A sinusoidal
oscillator, whose amplitude is controlled by
the amplitude envelope signal [1, indexes a
value in the shaping function table w. As
in other example instruments, the input
1/duration that is fed into the frequency
input of the envelope oscillator indicates
that it goes through one cycle over the
duration of the note.

Simple Waveshaping Instrument

An instrument for simple waveshaping synthesis is shown in figure 6.26. Here an envelope oscillator controls
the amplitude of a sinusoidal oscillator that is fed into a shaping function table. The amplitude envelope [is
important because it has the effect of scaling the input signal, making it reference different regions of the
shaping function w. We look at the implications of this next.

Example Shaping Functions

As figure 6.27 shows, if the shaping function in table w is a straight diagonal line from 1 to + 1, the output of
w is an exact replica of its input x. This is because the table maps an input of 1 (shown at the bottom of the
function) to 1 in the outout (shown at the right of the function). 0 mans

DAZEC 253

< previous page page 254

1 — Cutput

Input

Figure 6.27
Shaping function shown with a linear response. The function
maps an input signal scaled over the range shown at the bottom
to an output function whose scale is shown at the right. To see
how the function maps an input to an output value, read
vertically from the bottom and then look to the right to see
the corresponding output value. Thus an input value of 0.4
on the bottom maps to an output value of 0.4 on the right.
This equivalence between the input and the output is only
true for a linear shaping function.

to 0, 1 maps to 1, and so on. Because this simple relationship between the input and the output occurs only
when the shaping function is a straight line, we say that in this case the output is a linear function of its input.

If the shaping table contains anything other than a straight diagonal line from 1 to + 1, x is distorted by the
shaping function in w. Figure 6.28 shows the effects of several shaping functions on an input sinusoid. Figure
6.28a shows an inverting shaping function. For every positive value of the input amplitude the waveshaper
emits a correspond negative value and vice versa. Figure 6.28b is a straight line but with a narrower angle than
the curve in figure 6.27. It maps to a narrower range on the right-hand (output) side of the shaping function,
meaning that it attenuates the input signal. Figure 6.28¢ expands low-level signals and sends high-level signals
into clipping distortion. The amplitude-sensitive nature of waveshaping in demonstrated well in figure 6.28d.
The shaping function is a straight line around zero, which is the low-amplitude portion of the grid. Such a
function nasses a low-amnlitude innut sienal with no distortion. When the amolitude of the

< previous page page 255

+1.0 +1.0
Output signal

Dutput sigrial

w /

T -1.0

<
Y

Input signal Imput signal

(c) (d)

+1.0 +1.0

Dutput signal Output signal

:
{4

w

-1.0

1 +1.0 .]
X N
i b

Input signal Input signal

Figure 6.28
Four shaping functions. (a) Inversion of the input signal. (b) Attenuation. (c)
Amplification of low-level signals (expansion) and clipping of high-level signals.
(d) Complicated amplitude-sensitive distortion.

input signal increases, the extreme ends of the shaping function subject the input signal to a complicated form of
distortion.

Amplitude Sensitivity of Waveshaping Spectrum

It is easy to see that the amplitude sensitivity of waveshaping can model a characteristic of acoustic
instruments. That is, when one plays an acoustic instrument "harder," for example, by strumming a guitar
forcefully, blowing a saxophone stridently, or striking a drum intensely, this enriches the spectrum. In
waveshaping we can emulate this effect by passing a signal whose overall amplitude varies with time through
the shaning function. As the amolitude of the inout sienal varies. one obtains a corresnondinglv

next page >

This version of Total HTML Converter is unregistered.

page 256 Page 1 of 1
< previous page page 256 next page >
Page 256

time-varied spectrum at the output. Put another way, a variation in the time domain at the input is manifest as a
variation in the frequency domain at the output. This is an important feature. Given a single shaping function
(precomputed and stored in memory), a variety of output waveforms can be obtained simply by varying the
amplitude or offset of the input signal in order to apply various regions of the shaping function. Hence
waveshaping is an especially efficient synthesis technique. Arfib (1979) gives practical examples of the
waveshaping technique in specific musical applications.

Chebychev Shaping Functions

Research by LeBrun (1979) and Arfib (1979) demonstrated that it is possible to predict exactly the output
spectrum of the waveshaping technique under mathematically controlled conditions. By restricting the signal x
to an unvarying cosine wave and using a family of smooth polynomials called Chebychev functions, which
take values in the range [1, + 1] to construct the shaping function w, one can produce easily any desired
combination of harmonics in a steady-state spectrum. This derives from the following identity:

Tk x (cos[1)=cos(k x)

where Tk is the kth Chebychev function. In other words, by applying the kth Chebychev polynomial to an
input sine wave, we obtain a cosine wave at the kth harmonic. This means that each separate Chebychev
polynomial, when used as the shaping function, produces a particular harmonic of x. By summing a weighted
combination of Chebychev polynomials and putting the result in the shaping table, a corresponding harmonic
mixture is obtained as the output of the waveshaping technique. For example, to obtain a steady-state
waveform with a first harmonic (fundamental), a second harmonic that is 0.3 the amplitude of the first
harmonic, and a third harmonic that is 0.17 of the first harmonic, we add the equations

70+ (0.3 x 12) +(0.17 x T3),

and we put the result into the transfer function wavetable. If a cosine wave is passed through this table, then the
output spectrum contains the desired harmonic ratios.

An advantage of using the Chebychev functions is that we can guarantee that the output of the waveshaper is
bandlimited. That is, it does not contain frequencies above the Nyquist rate, and therefore it is free of foldover
distortion. Table 6.1 lists the eauations for 7() through 78 where x = cos(a).

< previous page page 256 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 256.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 257 Page 1 of 1
< previous paqge page 257 next paae >

Page 257

Table 6.1 Chebychev functions 70 through 78

70=1

Tl =x

T2=2x2 1

73 =4x3 3x

T4 =8x4 8x2+1

75=16x5 20x3 + 5x

T6 =32x6 48x4+ 18x2 1

T7=64x7 112x5+56x3 7x

78 = 128x8 256x6 + 160x4 32x2 +1

Amplitude Normalization

The main drawback of waveshaping synthesis is that the output amplitude of the simple waveshaping
instrument shown in figure 6.28 varies considerably, even using only one shaping function. This variance is the
result of different parts of the shaping function being applied. That is, it depends on the amplitude of the input
signal to the shaping function.

In waveshaping the amplitude of x is actually used to control timbre, not the overall loudness of the sound. If

we want full independence between timbre and the output amplitude, some form of amplitude normalization is
required. At least three kinds of normalization are possible: loudness normalization, power normalization, and
peak normalization.

For musical purposes, our ideal would be loudness normalization, in which the perceived loudness of the
instrument is constant for all values of [1. However, this involves complicated psychoacoustic interactions and
context-dependencies, so it is too difficult and computationally expensive for most implementations. Power
normalization is based on division by the root mean square (RMS) of the harmonic amplitudes generated by a
particular shaping function. LeBrun (1979) gives details on this technique. Peak normalization is probably the
least complicated and most practical of the three. It is accomplished by scaling the output in relation to the
maximum value. Peak normalization ensures that the output amplitude of different tones will at least have the
same peak value, and will therefore not overload the digital-to-analog converters with a value out of their
range.

Figure 6.29 shows a waveshaping instrument with a peak normalization. The easiest way to do this is to
prepare a table containing normalization factors for all values of [, since the envelope a determines the
amolitude of x. For examnle. if the value of ['| inut to the normalization table is 0.7. we

< previous page page 257 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 257.html 5/23/2011

< previous page page 258 next paae >

Page 258

Frgqugnw 1fduration
Amplitude Amplituda

b A | [EnV

Qs

£

) Amplitude
Shaping normalization
function function

w N

X

W (etx) > N{oe)
Mormalized waveshaped signal

Figure 6.29
Waveshaping instrument with a normalization section. The value of
] indexes a value in the normalization table that scales the output of
the waveshaper.

multiply the output by the entry in the normalization table corresponding to [].
Variations on Waveshaping

The classic waveshaping techniquesending a cosine wave through a Chebychev polynomial shaping
functionproduces a range of harmonic spectra. We can extend this class of waveshaping spectra by changing
the input or the shaping function. Another possibility is modifying the signal coming out of the waveshaping
instrument by another signal-processing device, such as a filter.

As mentioned previously, the input x to the waveshaper can be any signal, not just a cosine wave. Reinhard
(1981). for examnle. details what hannens when x is the sum of two cosine waves at different freauencies.

next page >

This version of Total HTML Converter is unregistered.

page 259 Page 1 of 1
< previous page page 259 next paage >
Page 259

Another variation is to use a frequency-modulated signal for the input x. The benefit of this is that one can
obtain inharmonic combinations of partials and formant structures (Arfib 1979).

The signal x can also be a sampled or concréte sound. When the shaping function w is a simple and smooth
polynomial, the effect is not unlike phasing, since the harmonics of the input undulate in a time-varying way.
Hence a waveshaping instrument can generate an interesting hybrid of natural and electronic sound. If w
contains any straight horizontal or vertical lines the effect is a strong distortion, like the distortion of
transistorized electric guitar amplifiers turned to maximum.

Neither does w have to be a Chebychev polynomial. The main benefit of using Chebychev polynomials as

shaping functions is that the output is bandlimited and is therefore not subject to foldover distortion. But if this
benefit is not paramount, w can be constructed out of other kinds of equations. It can also be drawn by hand
(Buxton et al. 1982). See chapter 8 for an account of waveshaping with a noise-modulated shaping function.

Movable Waveshaping

Another variation is called movable waveshaping, imvented by Xin Chong at the Beijing Central Music
Conservatory (Xin 1987). In this technique the shaping function itself varies with time. This can be
accomplished by storing a longer shaping function and moving an index to scan various parts of it at different
times. Starting from simple input signals and simple time-varying shaping functions, a multiplicity of results can
be obtained.

Fractional Waveshaping

De Poli (1984) analyzed a configuration in which the shaping function is a fraction, specifically, a ratio between
two polynomials. He calls this fractional waveshaping. Fractional waveshaping can generate such effects as
exponential spectra and spectra whose shapes resemble a damped cosine wave. The multiple bumps of the
damped cosine wave spectrum are heard as formants. Dynamically varying spectra are achieved as in regular
waveshaping by varying the amplitude and offset of the input cosine signal.

Postprocessing and Parameter Estimation

The waveshaped signal can be passed through another signal processing device, what we could call
nostnrocessine the waveshaned sienal. This device

< previous page page 259 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 259.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 260 Page 1 of 1
< previous page page 260 next paage >
Page 260

could be, for example, an AM oscillator, a FM oscillator, or a filter. AM and FM can enrich the waveshaping
spectrum by adding, for example, inharmonic partials to a harmonic spectrum (Arfib 1979; Le Brun 1979; De
Poli 1984).

De Poli (1984) and Volonnino (1984) developed an experimental filtering method called frequency-
dependent waveshaping. This was aimed at providing independent control of the phase and amplitude of
each harmonic generated by the waveshaping process. See the cited literature for more details on these
techniques.

Beauchamp (1979) inserted a highpass filter on the output of his waveshaping model of brass tones in order to
mimic the damping effects of brass pipes. More recently, Beauchamp and Horner (1992) have simulated
instrumental tones by a multiple waveshaper + filter model. They first perform a parameter estimation of an
instrumental tone and approximate its spectrum with a single waveshaper + filter model. They subtract this
approximation from the original sound to obtain a difference or residual signal. They then approximate the
residual with another waveshaper + filter model. Using two or even three waveshaping models in this way
results in much closer simulations than a single model.

General Modulations

Many synthesis techniques can be turned into modulation techniques by substituting a time-varying function for
a constant term in the equation of the original technique. If the time-varying function is periodic, the technique is
one of a family of synthesis techniques known under the rubric of waveshape parameter modulation. For
example, amplitude modulation and frequency modulation can be classified as waveshape parameter
modulation techniques. For more on this classification scheme see Mitsuhashi (1980).

James A. Moorer (1976) showed that the equation for single FM is one instance of a general class of
equations called discrete summation formulas (DSFs). DSFs refers to a set of formulas that are the closed
form solution of the sums of finite and infinite trigonometric series. By "closed form" is meant a more compact
and efficient representation of a longer summation formula. These formulas are relevant to sound synthesis if
we assume that they describe waveforms that are sums of sinusoidal waves. For example, the right-hand side
of the following eauation is the closed-form solution to the summation shown in the left-hand side:

< previous page page 260 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 260.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 261 Page 1 of 1
< previous paqge page 261 next page >
Page 261

Y sin(kf) = sin[1/2(n -+ 1)8] sin[(nt)/2] csc(f/2).

k=l

This equation shows that we can represent the sum of # sine waves with just five multiplications, three divides,
and three table-lookup operations. As closed form equations, DSFs have only a few parameters to manipulate
and can be realized economically in digital form. Moorer's paper describes four DSFs that show promise for
sound synthesis. A much broader class of DSFs exists (Hansen 1975), but most of them are probably not
useful in music synthesis.

Some DSFs can generate time-varying tones that sound-similar to FM spectra. Moorer also described DSFs
that can generate spectra that are impossible with simple FM, such as one-sided spectra whose partials
extend in just one direction from the carrier frequency. Another family of spectra possible with DSFs are those
with partials whose amplitudes increase monotonically (i.e., by a constant factor).

A disadvantage of DSFs as against a technique like FM is the lack of amplitude normalization. Hence it is
necessary to apply some kind of scaling or normalization to the output of a DSF synthesis algorithm. (See the
discussion of amplitude normalization in the section on waveshaping.) Technically inclined readers with an
interest in exploring DSF methods should refer to Moorer (1976, 1977) or Moore (1990).

Conclusion

Signal modulation is a rich source of musical effects and sonorities. AM and RM have a long history due to
their applications in radioband communications. In the audio band, they generate classic "radiosonic" sounds.
They are, however, more limited than FM, partly because they do not generate as many sidebands, and partly
due to the flexibility of the FM panameters. In the case of FM, years of patient research by dozens of
engineers in the USA and Japan paid off in numerous refinements. Musicians invested countless hours tuning
the parameters of FM instruments to create a range of interesting "voices" or timbres.

One drawback of basic modulation techniques is inherent in the modulation formulas. The spectra of sounds
generated by modulation techniques are constrained by mathematical law to fixed kinds of behavior. In
practice, this means that each type of simple modulation has a characteristic sound "signature" that can be
discerned after some exnosure to the techniaue.

< previous page page 261 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 261.html 5/23/2011

< previous paqge page 262 next paae >

Page 262

Depending on the skill of the composer, this signature can either be an annoying cliché, or an attractive musical
force. In the latter category, Louis and Bebe Barron's electronic music soundtrack to the science-fiction film
Forbidden Planet (1956) stands as an outstanding example of musical use of modulation. In the future, more

elaborate synthesis techniques will be developed, but there will remain something deeply evocative about
artfullv denloved modulation.

page 262 next page >

< previous page page 263

7
Physical Modeling and Formant Synthesis

Phvsical Modeling Svnthesis
Efficiencv of Phvsical Modeling Svnthesis
Backeground: Physical Modeling
Excitation and Resonance
Classical Physical Modeling Methodology
Difference Equations
The Mass-spring Paradigm for Vibrating Strings
The Mass-spring Paradigm for Vibrating Surfaces and Volumes
The Mass-spring Paradigm for Excitation
Modal Synthesis
MOSAIC: A Practical Implementation of Modal Synthesis
Mclntyre, Schumacher, and Woodhouse Synthesis
Nonlinear Excitation and T inear Resonance
Sketch of MSW Svnthesis
Waveguide Svnthesis
Wavesuide Model of Plucked Strinos
Generic Waveenide Instrument Model
Waveguide Clarinet
Waveonide Horn
Innut Devices for Phvsical Modeling Svnthesis
Assessment of Phvsical Modeling Svnthesis
Source and Parameter Analvsis for Phvsical Modeling
Parameter Estimation Exneriments
Source Senaration

Hisher-order Snectriim Analvsis

< previous page page 264

Karplus-Strong (Plucked String and Drum) Svnthesis
Plucked Strings
Drumlike Timbres
Stretching Out the Decav Time
Extensions to KS
Formant Synthesis
Formant Wave-function Svnthesis and CHANT
Fundamentals of FOF Synthesis
Anatomy of a FOF
FOF Parameters
The CHANT Prooram
FOF Analvsis/Resvnthesis
Madels of Resonance
MOQOR Transformations
Matching the Snectrum Envelone with FOFs
VOSIM
VOSIM Waveform
Window Function Svnthesis

Conchision

This version of Total HTML Converter is unregistered.

page 265 Page 1 of 1
< previous padge page 265 next page >
Page 265

Never, it is believed, since the very first sound of the human voice emanated from the earliest
created of mankind, causing the oral mystery of sounded syllables to float upon the balmy airs of
Paradise, until now, has aught been perfected which could approximate in any real degree to the
Divinely bestowed "music of speech.” Many and varied have been the efforts made, from time to
time, to accomplish this apparently impossible purpose, but all have proved alike worse than futile.
It has been reserved for Mr. Giacopo Saguish, of Constantinople, to become the wonderful and
fortunate inventor of the Automaton Head, which (miraculous to relate) he has so contrived, by
means of the nicest and most exquisitely constructed mechanism, that it can rival Nature herself in
its vocal and elocutionary powers.

(Description of the Anthropoglossos or Mechanical Vocalist, London ca. 1835, reprinted in Ord-Hume
1973.)

This chapter treats three overlapping categories of synthesis methods, all of which strive to emulate acoustical
methods of sound production. Physical modeling synthesis models the acoustics of traditional instruments,
such as a jet of air through a mouthpiece into a resonating column. A simple variant of physical modeling,
Karplus-Strong synthesis simulates the sound of plucked-string instruments such as guitars, mandolins, and
harpsichords; drumlike sounds and other effects can also be generated. Formant synthesis circumscribes a
body of techniques designed to generate peaks in a frequency spectrum. Such techniques can simulate the
resonances of the human vocal tract, as well as those of traditional and synthetic instruments. We examine each
category in turn, beginning with physical modeling synthesis.

Physical Modeling Synthesis

Physical modeling (PhM) synthesis starts from mathematical models of the physical acoustics of instrumental
sound production. That is, the equations of PhM describe the mechanical and acoustic behavior of an
instrument being played. This approach has also been called synthesis by rule (Ferretti 1965, 1966, 1975),
synthesis from first principles (Weinreich 1983), or more recently, virtual acoustics (Yamaha 1993).

The goals of physical modeling synthesis are twofold: one scientific, and one artistic. First, PhM investigates the
extent to which mathematical equations and algorithmic logic can simulate the sound-producing mechanisms of
existing instruments. This approach is based on the premise that the closer the simulation, the better understood
the system is. In this sense, a physical model embodies the Newtonian ideal of a precise mathematical model of
a complicated mechanico-acoustic process. (For a concise introduction to the physics of waves in mechanical
and acoustic svstems. see Pierce 1974. Crawford 1968. or Olson 1991.)

< previous page page 265 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 265.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 266 Page 1 of 1
< previous page page 266 next paage >
Page 266

The second goal of PhM is more artistic. Simulation by physical models can create sounds of fanciful
instruments that would otherwise be impossible to build. In this category we include phantasmagorical
instruments whose characteristics and geometry can change over timesuch as an elastic cello that "expands"
and "shrinks" over the course of a phrase, or impossible drums whose heads cannot be broken no matter how
intensely they are hit. PhM techniques are often scalable, so that from a description of one gong we can
fabricate an ensemble of a dozen gongs, say, ranging in diameter from 30 centimeters to 30 meters.
Extrapolating from a specification of a single string, a musician can construct a virtual guitar whose strings are
as long and thick as bridge suspension cables. To the delight of musical alchemists, changing the materials of
constructionfrom silver to brass, to exotic woods, to plasticmay be as simple as typing a few constants.

PhM excels at simulating transitions between notes and timbres. By dynamically changing the size of certain
parts of a virtual instrument (such as elongating a resonating tube), believable sonic transitions often result.
Another characteristic of PhMs is that they capture the accidents that occur in performance, such as squeaks,
mode locking, and multiphonics. These sounds are uncontrollable when a novice performer attempts to play,
but when used in a controlled manner they inject a dose of realism into the simulation. In PhM synthesis these
sounds occur naturally, as a side effect of certain parameter settings. Compare this with the case of additive
synthesis, where detailed specifications must be given for every aspect of sound.

PhM synthesis methods do not attempt to create a "complete" physical model of an instrument. Rather than
accounting for all possible conditions of the instrument's existence, they need only to account for the physics of
an instrument in the highly constrained situation of performance. In performance, the performer usually makes
only a small number of idiomatic gestures with the instrument. This relatively low-bandwidth control information
can usually be represented concisely in software.

Efficiency of Physical Modeling Synthesis

PhM synthesis circumscribes a family of techniques developed by various researchers over more than three
decades. Because of the mathematical nature of many of these techniques and the heavy computational burden
they can impose, PhM synthesis has emerged slowly from laboratory environments to musician's studios.

Only in recent years have relatively efficient implementations been developed for certain types of physical
modeling svnthesis (Mclntvre.

< previous page page 266 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 266.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 267 Page 1 of 1
< previous page page 267 next paage >
Page 267

Schumacher, and Woodhouse 1983; Smith 1986, 1987a, b, 1992; Keefe 1992; Adrien 1991; Woodhouse
1992; Cook 1991a, b, 1992, 1993; Borin, De Poli, and Sarti 1992). These efficient algorithms (such as
waveguides) are based on common digital signal-processing structures such as delay lines, filters, and table-
lookup operations. In general, however, their efficiency comes at the expense of drastic simplifications. This
means that they often generate "instrument-like" tones without necessarily achieving striking realism. This is not
to say that such simulations are uninteresting. From a compositional viewpoint, flexible instrument-like tones
can be quite useful. Woodhouse (1992) confronts some shortcomings of contemporary models.

This chapter describes both the "classical" or computationally intensive approach as well as more efficient
strategies such as modal synthesis, Mclntyre, Schumacher, and Woodhouse synthesis, and waveguide
methods. We also present a very efficient method called Karplus-Strong synthesis later in the chapter.

Background:
Physical Modeling

The concepts, terminology, and some of the formulas used in physical modeling synthesis can be traced to
nineteenth-century scientific treatises on the nature of sound, such as Lord Rayleigh's extraordinary volume
The Theory of Sound (1894/1945). Rayleigh detailed the principles of vibrating systems such as membranes,
plates, bars, and shells, and described the mathematical physics of vibrations in the open air, in tubes, and in
boxes. Other nineteenth-century pioneers built mechanical models to simulate the physics of musical
instruments (Helmholtz 1863; Poynting and Thomson 1900; Tyndall 1875; Mayer 1878). Following the
invention of the vacuum tube, analog electronic models were built (Steward 1922; Miller 1935; Stevens and
Fant 1953). See Olson (1967) for analog circuit physical models of percussion, lip-reed instruments, air-reed
instruments, struck string instruments, and the voice. But progress was generally slow until the computer era.

John Kelly and Carol Lochbaum at Bell Telephone Laboratories were pioneers in adapting a physical model of
the human vocal tract to a digital computer (Kelly and Lochbaum 1962). Their rendition of Bicycle Built for
Two, which appeared on the Bell Telephone Laboratories disk Music from Mathematics produced by Max
V. Mathews in 1960, became a world-famous symbol of the increasing capabilities of digital computers. (The
Stanley Kubrick film 2001: A Space Odyssey makes reference to this achievement when the once-powerful
computer HAL regresses to its earlier days and sings this song. The version in the film is sung by a human
actor. however.)

< previous page page 267 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 267.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 268 Page 1 of 1
< previous padge page 268 next page >
Page 268

Lejaren Hiller, James Beauchamp, and Pierre Ruiz at the University of Illinois were the first to adapt physical
models to the synthesis of instruments (Hiller and Beauchamp 1967; Ruiz 1970; Hiller and Ruiz 1971). Their
work focused on synthesizing the sound of vibrating objects such as strings, bars, plates, and membranes set
into motion by plucking and striking. Another pioneer of physical modeling synthesis is Ercolino Ferretti, who
directed work by students at MIT, Harvard University, and the University of Utah in the 1960s and 1970s
(Ferretti 1965, 1966, 1975).

Interest in applying waveguides to synthesis was provoked by the discovery of the Karplus-Strong plucked-
string algorithm (described later in this chapter). This computationally efficient method came about more as an
accident than as an intentional attempt at physical modeling (Karplus and Strong 1983; Jaffe and Smith 1983).
Keefe (1992) summarizes other developments since 1963 (see also Fletcher and Rossing 1991). In 1993 the
Yamaha company announced commercial synthesizers based on waveguides, the VL1 and VP1.

Excitation and Resonance

Question: The resonant modes of a wind instrument are not perfect harmonics, but the tone may be
perfectly harmonic. On the other hand, a percussion instrument has non-harmonic resonances and
produces a non-harmonic sound. What is the difference?

Answer: The key here is to consider not just to consider the resonant modes and how they are
placed, but how the instrument is excited. If you pick up a trumpet and hit it with a hammer, the
sound is percussive. If you take a snare drum and excite it with a [vibrator] the sound is harmonic.
(B. Hutchins 1984)

A fundamental principle of physical modeling synthesis is the interaction between an exciter and a resonator.
An excitation is an action that causes vibration, such as the stroke of a bow, the hit of a stick, or a blow of
air. A resonance is the response of the body of an instrument to the excitation vibration. From a signal-
processing point of view, the body acts as a time-varying filter applied to the excitation signal.

In general, the exciter has a nonlinear behavior, and the resonator has a linear behavior. We have already
touched on this subject in chapter 5. As an intuitive explanation of a "linear" acoustical system, we mean one
that responds proportionally to the amount of energy applied to it. If we put two signals into the system, we
expect that output to be their sum. By "non-linear" we mean a system that has built-in thresholds that, if
exceeded, cause the system to respond in a new way, as if a switch had been thrown.

Exciter/resonator interactions fall into two basic classes: decoupled (or feedforward), and coupled (or
feedback). In subtractive svnthesis techniaues

< previous page page 268 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 268.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 269 Page 1 of 1
< previous page page 269 next paage >
Page 269

like linear predictive coding (see chapter 5), a source or excitation signal is injected into a resonant filter. There
is no other interaction between the source and the excitation than this transfer of energy from the exciter to the
resonator.

In contrast, the mechanism of tone production in a saxophone is an example of coupled excitation. By coupled
we mean that the vibration of the resonanting part feeds back to the excitation part. For example, the
frequency of the vibrating reed is strongly influenced by acoustic feedback from the resonanting bore (tube) of
the instrument, after being excited initially by a blast of air from the mouth.

This interaction between the excitation and the resonance creates the variety and subtlety of sound we hear in
performances by instrumental virtuosos. Because PhM techniques can model this interaction, they tend to
communicate a sense of the gesture behind the emission of sound (Florens and Cadoz 1991; Adrien 1991).
This stands in contrast to abstract synthesis methods that are controlled by mathematical formulas not directly
related to gestural control.

In some implementations of PhM synthesis, the excitation comes from an input device (or performance
controller) played by a performer (Cadoz, Florens, and Luciani 1984; Cook 1992). See the section on input
devices for PhM synthesis later. (See chapter 14 for more on musical input devices in general.)

Classical Phvsical Modeling Methodology

The "classical" approach to physical modeling is represented by the early work of Hiller and Ruiz (1971) and
many researchers thereafter. The classical methodology is as follows.

First, one specifies the physical dimensions and constants of vibrating objects such as their mass and elasticity.
This is done because in acoustic instruments, sound is produced by vibrating objects such as strings, reeds,
membranes, or flows of air within a tube or body of an instrument.

Next, the boundary conditions to which the vibrating object is constrained are stipulated. These are the
limiting values of the variables that cannot be exceeded. The boundary conditions also allow for the possibility
that the system has not fully "come to rest" or settled following a previous input.

The initial state is specified, for example, the starting position of a string at rest.

Next, the excitation is described algorithmically as a force impinging on the vibrating object in some way.
Typlcal sources of excitation in acoustic instruments include percussive sources such as drumsticks, mallets,
and

< previous page page 269 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 269.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 270 Page 1 of 1
< previous page page 270 next paage >
Page 270

piano actions, wind sources such as the flow of air between reeds, and bows of stringed instruments. Coupling
between exciter and resonator can be specified in this algorithm.

Impedence effects must be accounted for. Impedence is a resistance to a driving force; in a medium with high
impendence, a large force is required to generate a small amplitude. As waves pass from one part of an
instrument to another, the impedence of the different parts alters the wave propagation. For example, consider
two joined strings, where one is much heavier than the other. If we strike the light string, the wave will hit the
heavier string, and nearly all the energy will be reflected back to the lighter string. Whereas if the two strings
are of equal impedence, there will be no reflections. Researchers have measured the impedences of various
instrument components, and the appropriate equations can be inserted into the physical model (Campbell and
Greated 1987).

Finally, the filtering due to factors such as friction and sound radiation patterns are specified as a further
restriction on the conditions of vibration.

At this point one has a rather complicated system of equations that represent a physical model of the
instrument. The corresponding wave equation, which combines all these factors, is subjected to the initial
conditions and the excitation (Morse 1936). The wave equation is then solved by an iterative successive
approximation procedure that tries to find reasonable values for many interdependent variables simultaneously.
This equation generates a discrete sample value representing a sound pressure wave at a given instant of time.

Underneath the classical methodology are a set of difference equations based on the mass-spring
paradigma model of vibrating structures that we describe in the next sections.

Difference Equations

In the classical approach to physical modeling synthesis, sound samples result from the evaluation of
difference equations that describe the vibrational behavior of physical objects. A difference equation involves
differences and derivatives of functions. These equations are usually invoked when describing how a signal
changes over time. Coincidentally, the first application of difference equations, by Joseph Bernoulli in 1732,
was the simulation of a vibrating string of finite lengtha central technique of physical modeling synthesis.
Difference equations also describe the operation of digital filters. All of the FIR and IIR filter equations in
chapter 10 are examples of difference equations. (For more on difference equations see Rabiner and Gold
1975 or anv other digital sienal-nrocessing textbook.)

< previous page page 270 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 270.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 271 Page 1 of 1
< previous paqge page 271 next page >
Page 271

Physicists use difference equations to describe the laws of change of physical quantities. In modeling a
phenomenon this way, the first step is to find the smallest number of variables that can accurately describe the
state of the modeled phenomenon. The next step sets up the simplest difference equations that are precise
descriptions of the laws governing the changes in these variables. Certain classes of difference equations have
general algebraic solutions, while others can only be solved by time-consuming successive approximation
methods (Press et al. 1988). In these methods a solution is determined by first guessing at a solution and then
successively improving the solution, iteratively.

The Mass-spring Paradigm for Vibrating Strings

The study of vibrating strings in musical instruments has fascinated scientists and musicians for centuries. So it is
not surprising that Hiller and Ruiz (1971) took the vibrating string as a point of departure in their pioneering
research. They solved difference equations for strings plucked and stroked at the center, near the ends, and at
the endpoint. The velocity of a bow, the applied pressure, and a friction coefficient were supplied as part of the
initial conditions. They also took other factors into account, including air friction, string thickness, movement of
the bridge, transmission of energy by the bridge to a resonator, and the radiation of energy from a resonating
box.

In this work, as in some recent simulations, strings are modeled in the classical way as a series of discrete
masses connected by springs. The mass-spring model has long been used by physicists and acousticians to
describe vibrating objects and the waves they emit (Crawford 1968; Benade 1990; Cadoz, Luciani, and
Florens 1984; Weinreich 1983; Smith 1982, 1983; Hutchins 1978; Adrien and Rodet 1985; Boutillon 1984;
Chafe 1985). The mass-spring paradigm captures two essential qualities of vibrating media. First, vibrating
media have a density, which is the mass per unit amount of the medium. For a string, the density can be
measured as its weight. Second, vibrating media are elastic; if any part of the medium is displaced from its
position of equilibrium, a restoring force immediately appears that tries to push it back. If we create a
disturbance in one part of the string by plucking it, the displaced parts of the medium exert forces on adjacent
parts, causing them to move away from their equilibrium position. This in turn causes the next portions to
move, and so on, in a process called wave propagation. Because of the mass of the medium, the parts do not
move instantly away from their equilibrium positions, but instead require a short time. As a result, the pluck
imnulse nronagates through the medium at a snecific sneed.

< previous page page 271 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 271.html 5/23/2011

< previous padge page 272 next paage >
Page 272

Mass Spring

eoe e

*

(d)

m’ﬂm

Initial displacement

(e

%M‘Q

Figure 7.1
Mass-spring model of vibrating strings. (a) The
springs model the elasticity of the string. (b) In a
longitudinal wave, the disturbance is in the same
direction as the wave propagation. The initial
displacement (compression of the spring) is
marked by an asterisk. (¢) Following state. (d)
In a transverse wave, the initial disturbance is
perpendicular to the direction of wave
propagation. (e) Following state.

Figure 7.1a depicts a string as a number of identical masses connected together by light springs. If the first
mass is displaced to the right, the first spring compresses, exerting a force on the second mass (figure 7.1b).
The second mass will then move to the right, compressing the second spring, and so on, as in figure 7.1c.
Since the displacements of the successive masses are in the direction that the disturbance is traveling (that is,
horizontally), this is called a longitudinal wave.

Figures 7.1d and 7.1e show transverse wave propagation that occurs when the initial displacement is
perpendicular to the direction that the wave propagates. This is the main type of wave vibration occurring in
musical strings

page 272

This version of Total HTML Converter is unregistered.

page 273 Page 1 of 1
< previous page page 273 next page >
Page 273
that are plucked, hammered, or bowed. Another type of vibration is rotational, but this is not usually modeled
in sound synthesis.

Separating the string into a set of discrete masses has the computational advantage that the effect of excitation
on a given point of the string can be modeled as the application of a force to a single mass that transmits this
force to the other masses via the springs. After a string has been struck, the shape of the string at a particular
point in time is determined by solving a set of difference equations.

The Mass-spring Paradigm for Vibrating Surfaces and Volumes

The mass-spring representation can be extended to vibrating surfaces and volumes. Surfaces can be modeled
as a fabric of masses connected to by more than one spring (figure 7.2a), or arranged in a circular pattern to
model the skin of a drum (figure 7.2b). Volumes take the shape of a lattice (figure 7.2c), with the masses
interconnected up to six ways.

The Mass-spring Paradigm for Excitation

So far we have described systems of masses and linear springs as models for resonators. If the springs are
defined to have a nonlinear behavior, they become good models for excitation. The nonlinear oscillators that
are often used as exciters in PhM methods can be viewed in terms of the mass and nonlinear spring model
(Rodet 1992). The masses represent the inertial behavior, while nonlinear springs account for elastic properties
of the body of the exciter. A nonlinear friction component accounts for the contact condition between the
exciter and the resonator. Such a representation has been applied to a model of the hammer of a piano, for
example (Suzuki 1987).

Modal Synthesis

The motion of a complicated system having many moving parts may always be regarded as
compounded from simpler motions, called modes, all going on at once. No matter how complicated
the system, we will find that each one of its modes has properties very similar to those of a simple
harmonic oscillator.

(F. Crawford 1968)

Modal synthesis (Calvet, Laurens, and Adrien 1990; Adrien 1991) is an alternative to the mass-spring
paradigm. It starts from the premise that a sound-producing object can be represented as a collection of
vibrating substructures. The number of substructures is usually very small in comparison with those in the mass-
snring annroach. Tvnical substructures include violin

< previous page page 273 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 273.html 5/23/2011

< previous page page 274

Figure 7.2
Models of vibrating surfaces and volumes as masses connected by springs. The black dots are
the masses, and the lines represent springs. (a) Model of a vibrating surface. () Model of a drum
head as a circular arrangement of springs and masses. (c) A vibrating volume can be modeled as a
lattice of masses connected bv snrings on six sides.

This version of Total HTML Converter is unregistered.

page 275 Page 1 of 1
< previous page page 275 next paage >
Page 275

bridges, violin bodies, acoustic tubes, bells, drum heads, and so on. As in the mass-spring paradigm, the
substructures respond to an externally applied excitation (forces, air flows, pressures, or movements). When
they are excited, each substructure has a set of natural modes of vibration. These modes are specific to a
particular structure and depend on many physical factors that we will not go into here (see Benade 1990, for
example). A factor in favor of modal synthesis is that a well-defined methodology for analysis of modes of
vibration already exists, due to its many industrial applications (Hurty and Rubinstein 1964; Hou 1969); this
methodology can be adapted to sound synthesis. See Bork (1992) for a brief description of modal analysis of
musical instruments, with additional references.

Modal synthesis characterizes each substructure as a set of modal data, consisting of (1) the frequencies and
damping coefficients of the substructure's resonanting modes, and (2) a set of coordinates representing the
vibrating mode's shape. Hence, the general instantaneous vibration of an instrument can be expressed as the
sum of the contributions of its modes.

In Adrien's implementation, the instantaneous vibration is described by a vector of N coordinates associated
with N chosen points over the structure. These coordinates are bound together in such a way that the
geometrical and mechanical features are close to the instrument's characteristics. The set of N points is
equivalent to the corresponding N sets of modal data. A given vibration mode can be described by the relative
displacements of the N points.

For simple vibrating substructures such as an undamped string, the modal data are available in the mechanical
engineering literature in the form of equations. For complex vibrating structures the modal data can be obtained
through experimentation with actual instruments. Tools for this type of mechanical engineering analysissuch as
transducers and analysis softwareare available to researchers, since they are used in industrial applications such
as aircraft design.

The modal approach has an advantage of flexibility over the mass-spring paradigm. This derives from the
modularity of the modal substructures. Modal synthesis partitions sound-producing mechanisms into vibrating
substructures. It is possible to add or subtract substructures to create time-varying synthesis effects, such as
"expanding" or "shrinking" the size of an instrument. The method also permits timbral interpolations from one
instrument to another bv combining substructures in an unnatural manner.

< previous page page 275 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 275.html ~ 5/23/2011

< previous page page 276 next paage >

Page 276

MOSAIC:
A Practical Implementation of Modal Synthesis

The MOSAIC system, developed by Jean-Marie Adrien and Joseph Morrison, is a particularly clear
realization of modal synthesis, as a modular software toolkit (Morrison and Waxman 1991; Morrison and
Adrien 1991). For this pedagogical reason, we present a full example here.

In the world of MOSAIC, you sit before a virtual workbench with a collection of objects that you assemble
into instruments. The objects include strings, air columns, metal plates, membranes, and violin and cello
bridges. Other objects excite the instrument, such as bows, hammers, and plectrums. Interactions between
objects are called connections. Connections can be thought of as black boxes that go between objects and
specify a relationship between them. For example, two objects can be connected by means of gluing, bowing,
plucking, striking, and pushing. On each connection are controllersknobs that stipulate the parameters of the
control. A bow connection, for example, has controllers for speed of bowing, amount of rosin, and so on.
Finally, a physical location on an object is called an access. To connect two objects, for example, we need to
specify their accesses.

Position contraller

@—‘ Position

[

String pluck access

String listen access

Figure 7.3
Plucked string simulated by the MOSAIC program.
(a) Graphical representation. (b) MOSAIC code
corresponding to (a). Lines beginning with a
semicolon are comments. See the text for an
explanation of the code.

< previous page page 277 next paae >

Page 277
(b)

;77 MOSAIC plucked string example, written in Scheme
;;; Make string and plectrum objects

(define my-string (make-object 'monostring))
(define my-plectrum (make-object 'bi-two-mass))

;77 Make pluck connection between plectrum and string
(define my-string-pluck

(make-access my-string (const .6) 'trans0))
(define my-plectrum-pluck

(make-access my-plectrum (const 1) 'transO0))

(make-connection 'pluck my-string-pluck
my-plectrum-pluck 0 .1 (const 50))

;;; Make position connection to push plectrum

(define my-plectrum-move
(make-access my-plectrum (const 0) 'transO0))

;77 Move plectrum from .1 meter to -.5 meter in .5 secs
(make-connection 'position my-plectrum-move
(make-controller 'envelope 1
(list (list 0.00 .1)
(list 0.50 =-.5))))

;77 Make listening point on string

(define my-string-out
(make-access my-string (const .3) 'trans0))

(make-point-output my-string-out)
;77 Run the synthesis and play the sound

(run 2) ; Make 2 seconds of sound

Figure 7.3 (cont.)

page 277

This version of Total HTML Converter is unregistered.

page 278 Page 1 of 1
< previous page page 278 next paage >
Page 278

Figure 7.3a is an example of the use of the concepts of objects, connections, controllers, and accesses. The
example is represented in the diagram shown in figure 7.3b.

The example is written in Scheme (Abelson and Sussman 1985), a dialect of the Lisp programming language.
The Scheme language follows a general syntax of the form:

(function arguments)

This means that the "verb" or operation is specified first, followed by the specific arguments to that operation.
When parenthetical expressions are nested, the inner ones are executed before the outer ones. For example,
the command

(define my-string (make-object 'mono-string))

creates a string object named my-string and places it on the virtual workbench. When MOSAIC carries out
this command it performs a full modal analysis. The name my-string points to the data generated by this
analysis. Besides a string we need a plectrum:

(define my-plectrum (make-object 'bi-two-mass))

We want to tell MOSAIC to use the plectrum to pluck the string, but MOSAIC requires that we stipulate
specific access points. These are given by the lines:

(define my-string-pluck

(make-access my-string (const .6) 'transO0))
(define my-plectrum-pluck
(make—-access my-plectrum (const 1) 'transO0))

The names my-string-pluck and my-plectrum-pluck are just names for the points where the two objects touch.
The next line makes the plucking connection:

(make-connection 'pluck my-string-pluck
my-plectrum-pluck 0 .1 (const 50))

The first argument after the 'pluck are the access points for the object plucked and the plucker. The following
two arguments say that the position of the object plucked is 0 and the plucker is 0.1 meter from that point. The
third argument directs a controller decides when to release the string. The number 50 is the force in newtons.
(A newton is a unit of force. A force of

< previous page page 278 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 278.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 279 Page 1 of 1
< previous page page 279 next paage >
Page 279

1 newton pushes 1 kilogram to accelerate 1 meter per second.) When the plucker is pushing harder than 50
newtons, the pluck connection disengages. The next lines make a second access on the plectrum so that it can
be moved by an envelope controller.

(define my-plectrum-move
(make-access my-plectrum (const 0) 'trans0))
(make-connection 'position my-plectrum-move
(make-controller 'envelope 1
(list (list 0.00 .1)
(list 0.50 -.5))))

The envelope values are specified in terms of pairs of the form (¢ime value). The list functions create a list of
two lists out of these pairs. The last statements (define my-string-out . . . etc.) make an access for listening to
the string and command the instrument to play.

Mclintyre, Schumacher, and Woodhouse Synthesis

Another approach to physical modeling is the Mclntyre, Schumacher, and Woodhouse (1983) model. They
described an elegant, though highly simplified model of the mechanics of instrumental sound production.
Starting from the premise that oscillations (self-sustaining back-and-forth vibrations) generate tones in
woodwinds, bowed strings, and organ pipes, MSW focused in detail on the time-domain behavior of tones.
That is, they studied the birth and evolution of waveforms and the physical mechanisms behind these
phenomena. Prior to MSW's research, previous work (such as Benade's) stressed the importance of the
resonant frequencies in determining the sound of instruments. But this did not account for important details in
the instrument's waveform, such as the attack transient. The MSW time-domain approach gives insight into the
physical reasons for waveform variations in a range of instruments and accounts for such phenomena as pitch
flattening in bowed strings, subharmonics, and the duration of the attack transient.

After studying several instruments, MSW described an efficient synthesis method, which we call MSW
synthesis. MSW synthesis has the advantage that the control parameters are related to those exploited by
musical performers.

The next section discusses the theory behind the MSW approach. This is followed by a sketch of the MSW
svnthesis techniaue.

< previous page page 279 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 279.html 5/23/2011

< previous page page 280

Nonlinear Excitation and Linear Resonance

In MSW synthesis, tone production can be divided into two main parts: a nonlinear excitation and a linear
resonance (figure 7.4). In the MSW model of a clarinet, the nonlinear excitation is caused by blowing into the
clarinet mouthpiece, where the reed acts as a kind of switch, alternately opening and closing to allow the flow
of air into the resonating tube (clarinet bore) (Benade 1960, 1990). The switching action is caused by pressure
variations in the mouthpiece. The reed is half-open at the start, but the flow of air into the mouthpiece creates
pressure in the mouthpiece that closes the reed. This in turn gives the air a chance to escape from the
mouthpiece into the bore and out the open end of the clarinet, which opens the mouthpiece again. Hence the
reed converts a steady flow of air into a series of puffs. The frequency of the puffs is determined by the
effective length of the bore, which is varied by opening and closing keyholes. That is, the waves in the bore
resonate at the pitches playable by the clarinet. The mass and stiffness

Energy Source

Feedoack

¥

Monlinear excitation
{bow, mouthpiece,
plectrum, etc.)

L]

Linear resonator
{string, 1ube,
body, ete.)

L]
Cutput waveform

Figure 7.4
MclIntyre, Schumacher, and Woodhouse (1983)
model of instrumental oscillation. Wave
reflections from the linear resonator influence
the nonlinear exciter, constituting a feedback
path.

This version of Total HTML Converter is unregistered.

page 281 Page 1 of 1
< previous paqge page 281 next page >
Page 281

of the bore give it almost complete domination over the reed in determining pitch. This interaction constitutes a
kind of feedback from the resonator to the exciter, as shown in figure 7.4. Thus the MSW model accounts for
exciter/resonator coupling.

In the MSW model of bowed strings, nonlinear switching occurs when the friction of the bow "captures" the
string for a brief interval until the string slips and is "released" by the bow. Then friction builds again, and the
string is again "captured," and so on. In a flute or an organ pipe, the nonlinear excitation is caused by air
pressure buildups in the short end of the tube. When the pressure buildup is high, the force of its release
overcomes the incoming airjet and causes a brief interruption in the air flow into the tube.

In all three of these cases (woodwinds, bowed strings, and pipes), the excitation is a nonlinear switching
mechanism that sends a sharp impulse wave into the linear part of the instrument. The linear part acts like a
filter to round the waveform into the characteristic timbre of the instrument.

Sketch of MSW Synthesis

For a given instrument, MSW synthesis models the objects and actions as a compact set of equations. The
most complicated and instrument-specific equations describe the excitation. The main variables are the energy
source (flow of air in a clarinet, flute, organ pipe, or the friction force of a bow in a stringed instrument), the
fluctuating energy of the nonlinear element, and a reflection function that describes the waveform filtering
effect played by the linear part of the system. The equations for the nonlinear and the linear parts are evaluated
simultaneously. For details on these equations we refer the reader to McIntyre, Schumacher, and Woodhouse
(1983). Smith (1986) and Keefe (1992) describe efficient implementations of the MSW model. Their
implementations substitute table lookups and multiplications in place of the more costly simultaneous solution of
equations for each sample point.

The sound produced by the pure MSW model is not terribly realistic, due to its many simplifications.
Considerable refinement is required to make convincing models of real instrument tones. For example, Keefe
(1992) describes an extension of MSW synthesis to brass instruments. He implemented a detailed subprogram
for specification of air columns (such as those of brass instruments, flutes, and organ pipes) in order to test
various desiens for sonic accuracv.

< previous page page 281 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 281.html 5/23/2011

This version of Total HTML Converter is unregistered.

page 282 Page 1 of 1
< previous paage page 282 next page >
Page 282
Waveguide Synthesis

Waveguides are an efficient implementation of PhM synthesis that serve as the engine of synthesizers
introduced by Yamaha and Korg in 1993 and 1994 (Smith 1982, 1983, 1986, 1987a, b; 1991b, 1992;
Garnett 1987; Garnett and Mont-Reynaud 1988; Cook 1991a, b, 1992, 1993; Hirschman 1991; Hirschman,
Cook, and Smith 1991; Paladin and Rocchesso 1992; Van Duyne and Smith 1993). A waveguide (or
waveguide filter) is a computational model of a medium along which waves travel. In musical applications this
medium is usually a tube or a string. Waveguides have long been used by physicists to describe the behavior of
waves in resonant spaces (Crawford 1968).

A basic waveguide building block is a pair of digital delay lines (see chapter 10). Each delay line is injected
with an excitation wave propagating in the opposite direction and reflecting back to the center when it reaches
the end of the line. A delay line is a good model of this process because wavefronts take a finite amount of
time to travel the length of a resonating medium. Traveling waves running up and down the waveguide cause
resonances and interferences at frequencies related to its dimensions. When the waveguide network is
symmetric in all directions, the sound it produces when excited tends to be harmonic. If the waveguide twists,
changes size, or intersects another waveguide, this changes its resonant pattern. As we will see, the voice and
instruments such as brass, woodwinds, and strings can be simulated by means of oscillators driving a
waveguide network. Garnett (1987) built a simplified model of a piano out of waveguides. Chapter 11
describes applications of waveguides to reverberation.

An attractive feature of waveguides is that they are largely compatible with the Music N synthesis language
paradigm. This means that the building blocks of waveguide networks can be merged with standard unit
generators (Link 1992).

The next four sections describe a waveguide model of plucked strings, a generic waveguide instrument that can
simulate either stringed or wind instruments, and more specific models of a clarinet and a horn.

Waveguide Model of Plucked Strings

The simplest waveguide model is perhaps a monochord or single-string instrument. This model can be
understood as a picture of what happens when a string is struck at a particular point: two waves travel in
opposite directions from the impact point (figure 7.5). When they reach the bridges, some of their energy is
absorbed. and some is reflected back in the onnosite

< previous page page 282 next page >
C:\Users\Phonopulvis\Desktop\The Computer Music Tutorial - Curtis Roads\files\page 282.html 5/23/2011

< previous paage page 283 next paage >
Page 283

Downward stroke of hammer

v

Wavefront Wavefront

Figure 7.5
A string struck at the center generates two waves
moving in opposite directions. This behavior is the
basis of the delay line paradigm of string vibration.

Monlinear
axcitation

l

Simulated
ACOUSS
signal

Figure 7.6
Generic waveguide instrument model capable of simulating stringed or wind
instruments (after Cook 1992). A nonlinear excitation injected into the upper
delay line travels until it hits the scattering junction, which models the losses
and dispersion of energy that occur at junctions in acoustical systems. Some
energy returns to the oscillator junction, and some passes on to the output
junction, modeled by a filter.

directiontoward the point of impact and beyond where the two waves interact, causing resonances and
interferences. In the parlance of waveguide theory, the bridges act as scattering junctions since they disperse
energy to all connected waveguides. The pitch of the vibrating string is directly related to the length of the two
waveguides.

Generic Waveguide Instrument Model

Figure 7.6 shows a generic model of a simple waveguide instrument capable of modeling stringed or wind
instruments (Cook 1992). A sharp nonlinear excitation wave is injected into a delay line until it hits a scattering
junction that passes some energy on and bounces some energy back. The scattering junction is a linear or
nonlinear filter that models the effect of a finger or

page 283

< previous page page 284 next paae >

Page 284

Figure 7.7
Waveguide approximation of noncylindrical
tubes. (a) Smooth acoustic tube, such as an
exotic horn or a portion of the vocal tract. (b)
Approximation by partitioning the tube into
sections, in effect, sampling in space.

bow pressing on a string, or a tonehole on a wind instrument. The filter at the end models the effect of the
bridge. body. or bell of the instrument.

In order to approximate a noncylindrical tube such as a horn or the vocal tract, the tube is divided into equal-
length sections, each of which is represented by a waveguide filter. This is called sampling in space, directly
corresponding to sampling in time, since it takes a finite amount of time for a wavefront to travel a certain
distance in space. The parameters of the scattering junction at the boundary of adjacent waveguides derive
from physical dimensions of the tube at that point.

Figure 7.7 shows how a smooth acoustic tube is partitioned into a series of discrete sections, each modeled by
a waveguide. Similar approximations can be fitted to two-dimensional surfaces and three-dimensional spaces
(for reverberation simulation) (Smith 1991b; Cook 1992).

In brass and woodwind simulations, a waveguide simulates each section of tube of the instrument. The reed or
mouthpiece, which serves as the excitation, is modeled either by a simple table-lookup oscillator or by a more
complicated nonlinear oscillator driving the waveguide network. The nonlinear oscillator is modeled as a mass-
spring-damper mechanism, as described earlier. This same scheme (nonlinear oscillator driving waveguide
network) can also be applied to string synthesis, where the nonlinear oscillator models the interaction between
the bow and the string (Chafe 1985).

page 284 next page >

< previous page page 285

Registar hole

Upper bore Emw . Lower bore
{modeled by SCalkEn (modeled by
deley ling) junmuun? delay ling} /

Mouth — - =]

|- —
FESSUFE —e=] —= radiation
¢ j?l (’:f . - {writt=n 1o

sownd file)
Feed]/ \

[PN

Eell
[modaled by
filsers)

[rcckeked by
nonlineer azcillator)

Register hole

radiation
(writlen 1o sound file}

Figure 7.8
Clarinet modeled as a five-part structure using waveguide techniques.
Only a single hole is needed since the size of the upper and lower
bores changes according to the pitch being played.

By adjoining different waveguides via scattering junctions, adding filters at strategic points, and inserting
nonlinear junctions that excite the waveguide network, researchers have constructed models of whole families
of musical instruments. The next two sections give specific examples of waveguide instrument models.

Waveguide Clarinet

Figure 7.8 shows a waveguide model of a clarinet, after Hirschman, Cook, and Smith (1991) and Hirschman
(1991). The clarinet model has five parts:

1. Reed

2. Upper bore
3. Register hole
4. Lower bore
5. Bell

Only a single hole is needed because the size of the upper and lower bores change according to the pitch being
played. This type of model produces a clarinet-like tone with several realistic features, including the generation
of harmonics according to innut amolitude. and instrument saueakinggiven annronriate innuts.

This version of Total HTML Converter is unregistered.

page 286 Page 1 of 1
< previous paage page 286 next page >
Page 286
Waveguide Horn

Figure 7.9 shows a screen image from TBone, a brass instrument simulation using waveguides controlled by a
graphic interface (Cook 1991b). The display divides into three windows: French Trumbuba Controller,
Performer Controller, and Time-varying Event Controller.

The French Trumbuba Controller, at bottom, provides graphical controls for modifying the instrument. Sliders
control the position of the trombone slide, the flare of the bell, and individual sections of the mouthpiece. Text
fields let users specify the length of the bell, the slide, and each section of tubing associated with the four
valves. Clicking the valve buttons causes them to toggle between the up and down positions, and causes the
appropriate piece of tubing to be placed in or removed from the acoustic circuit. The spectrum display shows
the magnitude Fourier transform of the impulse response of the current horn configuration. This is often called
the transfer function and describes the gain each frequency would experience in a trip through the horn
system.

The Performer Controller window at upper right provides controls for modifying the model of the brass
player's lip. Simple controls of mass, spring constant, and damping are enough to specify the natural frequency
of the lip oscillator. The transfer function of the lip is shown in a spectrum display. When the "Toot" button is
pressed, the instrument synthesizes and plays a short note. The "Play" button causes the same sound file to be
plaved again.

The Time-varying Event Controller at the upper left has controls for time-varying sound synthesis. Sweeps of
the lip and slide and valve trills can be specified by begin and end times.

Input Devices for Physical Modeling Synthesis

Graphical interfaces provide a good visual picture of a PhM instrument, but it is difficult to play the instrument
in a realistic manner with only a mouse and an alphanumeric keyboard, due to the need to control many
parameters simultaneously. Some work ca